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A B S T R A C T

Test data has increased enormously owing to the rising on-chip complexity of integrated circuits. It further in-
creases the test data transportation time and tester memory. The non-correlated test bits increase the issue of the
test power. This paper presents a two-stage block merging based test data minimization scheme which reduces the
test bits, test time and test power. A test data is partitioned into blocks of fixed sizes which are compressed using
two-stage encoding technique. In stage one, successive blocks are merged to retain a representative block. In stage
two, the retained pattern block is further encoding based on the existence of ten different subcases between the
sub-block formed by splitting the retained pattern block into two halves. Non-compatible blocks are also split into
two sub-blocks and tried for encoded using lesser bits. Decompression architecture to retrieve the original test
data is presented. Simulation results obtained corresponding to different ISCAS089 benchmarks circuits reflect its
effectiveness in achieving better compression.
1. Introduction

The Integrated Circuit (IC) design and fabrication approaches have
gone through tremendous advancements leading to the creation of a
complex two and three-dimensional System on chip (SoC) designs. Such
SoCs may also be equipped with on-chip networks (NoC) to ease out the
on-chip interconnectivity. However, the tremendously growing on-chip
complexity has led to new test challenges [1]. One of the biggest chal-
lenges faced by test engineers is the enormously increasing test data
volume which is required for fault-free delivery of the product to the
market. Pre-generated test sets stored in the memory of the Automatic
Test Equipment (ATE) are delivered to the Circuit Under Test (CUT)
using scan-based test approach [2]. The serial transportation of a large
number of test bits between the ATE and CUT pins at low ATE clock
increases the test application time. The test bits being uncorrelated lead
to occurrence of very high switching activity at various scan cells which
in turn increase the test power. Hence, a reduction of the amount of test
data, test power and test application time are very crucial to reduce the
overall test cost of a system. Meanwhile, it is important that the on-chip
test infrastructure (decoder etc.) required should not pose an unbearable
overhead.
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1.1. Analysis of existing literature

Various techniques have been proposed in the last three decades
which try to reduce the test data by appropriately reusing the unspecified
bits in the test data. Such techniques can be broadly classified as a) Linear
decompressors and broadcast scan-based techniques and b) Code based
techniques [3]. The categorization between the two majorly depends
upon the fact that the former ones require the structural knowledge of the
circuit under test while the code based don't. Linear decompressor-based
techniques utilize on-chip hardware to compress the test data by effi-
ciently utilizing don't care bits of the test data. Approaches like Linear
feedback shift registers based reseeding [4,5], scan-based concealment
[6], and ring counters [7], etc. Fall under the category of the linear
decompressors. Broadcast scan based [8] approaches have utilized single
channel of the tester to feed in other tester channels. Such approaches
reduce the amount of test data which needs to be transported which in
turn reduces the test time. Another scan-based approaches namely
reconfigured scan forest [9] and reconfigurable scan architecture with
weighted scan enables for determinitic BISTs [31] reduces the test data
even more. However, the use of such approaches is discouraged in sce-
narios like embedded core-based designs wherein the structural details of
CUT are not known to the test engineers [10]. Code based techniques, on
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Fig. 1. Flow chart of working of ABMTC.
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the other hand, can be applied directly on the test data to reduce the
number of the test bits. An off-chip compressor can compress the test data
to obtain an encoded test stream which can be decoded/decompressed
using on-chip decompressor hardware. Minimal on-chip test infrastruc-
ture and immunity to the underlying structural details have made the
code based test data compression to be a promising solution.

Various code-based test data compression techniques [11,12] have
been developed so far that attempts to compress the test data on the basis
of the run lengths of the various types of test bits [13]. Such techniques
can be differentiated as statistical code based and run-length based. The
statistical techniques like Huffman encoding [14,15], Run-Length (RL)
Huffman encoding [16] and optimal selective Huffman encoding [17]
compress the data depending upon the rate of occurrence of various
patterns. Run length code based techniques exploit the various combi-
nations of test bits to shrink the overall test data length. The test data
dedicated for digital on-chip testing consists of three types of data values:
LOW (0), HIGH (1) and don't care (X). These values are present in various
combinations like continuous runs of the same value (0/1/X), a mix of
LOWs (0s), HIGHs (1's) and don't cares (X's) values etc. Based on the
various test vector deterministic approaches for combinational designs, it
can be concluded that the consecutive test patterns normally differ in a
few number of bits; making 80–90% of the total test data of a circuit to
consist of don't care bits. The appropriate filling of such bits has been
used in the various techniques to compress the test data.

The Golomb Code [18] works on the compression by encoding the
continuous runs of all zeroes. The approach initially generates a differ-
ence vector by taking the exclusive OR of the successive patterns. Owing
to the fact that only a few bits differ at various bit positions among the
successive test vectors, the EX-OR operation helps to increase the lengths
of zeroes in different vectors. The codewords are produced on the basis of
group prefix and tail selection. However, the compression efficiency
suffered in cases of shorter run length of zeroes. Such cases lead to an
expansion of data instead of compression. It is resolved in the Frequency
directed Run-length (FDR) code [19,20] which makes use of variable
group sizes based on different run lengths. An extended FDR code
(El-Maleh, A.H. 2008a) works on the achievement of even better
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compression by encoding runs of recurrent zeroes/ones. Such techniques
provide a reasonably fair amount of test data compression. Even better
compression was achieved when the researchers started viewing the test
data to consist of combinations of continuous zeroes/ones or unique pat-
terns. A Unique combination needs to be retained as it is to avoid any loss
of information. The approaches which utilize encoding of block combi-
nations fall under block encoding techniques. The nine coded compres-
sion technique [21] considers the unique combinations along with the
runs of zeroes and ones. The blocks of fixed length on comparison can be
encoded according to the existence of nine different cases: all zeroes (00),
all ones (11) all zeroes followed by all ones (01), all ones followed by all
zeroes (10), all zeroes followed by a unique combination (0U), all ones
followed by unique combination (1U), unique combination followed by all
zeroes (U0), unique combination followed by all ones (U1), unique com-
bination followed by its compatible sub-block (UU). Nine Coded
compression technique can be categorized as fixed-length 9C and vari-
able length 9C depending upon the block length chosen [21]. Later, it
was found that the successive blocks of different lengths can be merged
together to obtain a merged block on the basis of existence of compati-
bility (inverse compatibility). Two bits are said to be compatible (inverse
compatible) if they are same (compliment) or either of them is don't care.
Hence, two blocks will be compatible if all the bits at same bit positions
are compatible with each other. Block merging codes like BM (El-Maleh,
A.H. 2008b), Block Merging and Eight Coding (BM-8C) [22], Variable
Prefix Run Length (VPRL) [23], Count Compatible Pattern Run-Length
(CCPRL) [23], Optimal Selective Count Compatible Run Length
(OSCCPRL) (Vohra and Singh. 2016), Hierarchical block merging tech-
nique (HBMT) [12] increase the efficiency by compressing Compatible
blocks of fixed sizes. BM-8C [22] integrates the compatibility-based
block merging and eight codes based intra-block merging techniques.

As stated earlier, rising test power is another threat for test engineers.
Due to concurrent activation of multiple circuit elements, the power
dissipation during test mode turns out to be much higher in comparison
to that of the normal operation. The non-correlation between the
consecutive bits of the test data increases the scan-in and scan-out
switching power at the boundary of the circuit under test. Various



Table 1
Encoding scheme of ABMTC scheme.

Inter/Intra UIMP Tail Codeword Sub-cases Inference

0 (Unique Block) 0 100 0_0_100_ b/2 bits U0 unique HLB followed by all zeroes
101 0_0_101_ b/2 bits U1 unique HLB followed by all ones
110 0_0_110_ b/2 bits 0U all zeroes followed by a unique HLB
111 0_0_111_ b/2 bits 1U all ones followed by a unique HLB

0 000 0_0_000 00 all zeroes
001 0_0_001 01 all zeroes followed by all ones
010 0_0_010 10 all ones followed by all zeroes
011 0_0_011 11 all ones

1 10 0_1_10_ b/2 bits UU Unique Compatible HLBs
11 0_1_11_ b/2 bits UU0 Unique Inverse Compatible HLBs

1 0 0_1_0_ b bits UV Unique block (No compatibility at HLB level)
1 (Block level merging) 0 100 1_0_100_ b/2 bits _count-code_relation bits U0 Block merging with U0 subcase at HLB level

101 1_0_101_ b/2 bits _count-code_relation bits U1 Block merging with U1 subcase at HLB level
110 1_0_110_ b/2 bits _count-code_relation bits 0U Block merging with 0U subcase at HLB level
111 1_0_111_ b/2 bits _ count-code_relation bits 1U Block merging with 1U subcase at HLB level

0 000 1_0_000 _ count-code_relation bits 00 Block merging with 00 subcase at HLB level
001 1_0_001_ count-code_relation bits 01 Block merging with 01 subcase at HLB level
010 1_0_010 _ count-code_relation bits 10 Block merging with 10 subcases at HLB level
011 1_0_011 _ count-code_relation bits 11 Block merging with 11 subcases at HLB level

1 1 10 1_1_10_ b/2 bit _ count-code_relation bits UU Block merging with UU subcase at HLB level
11 1_1_11_ b/2 bit _ count-code_relation bits UU0 Block merging with UU0 subcase at HLB level

1 0 1_1_0_ b bits_ count-code_relation bits UV Block merging with unique UV retained pattern
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techniques have been developed to reduce the test vector peak and
average values of the scan-in and scan-out powers. Optimum don't care
filling and vector reordering approaches have been successfully used to
reduce the test power. Alternative Statistical Run Length (ASRL) [32] ,
Low Power Switched Capacitor (LPSC) [24], Variable-length input
Huffman coding (VIHC) [29], Alternating frequency-directed equal--
run-length (AFDER) and run-length based Huffman coding (RLHC) [30]
techniques are examples of approaches that help in achieving a reduction
in the test power in addition to test data compression.

In this paper, a new encoding technique for test data compression is
proposed which utilizes the block merging approach for achieving test
data compression. The design of the associated test data decompressor is
also presented. The proposed technique achieves higher compression
ratio for precomputed test sets (independent of the structural details of
the circuit under test) resulting in minimization of test application time
and memory requirement for the test data.

The paper is structured as follows: Section 2 briefly highpoints the
shortcomings of the previous test data compression techniques.
Description of proposed Adaptive block merging technique and the
associated decompression architecture are given in section 3 and section
4 respectively. Section 5 contains simulation results for the test data
compression, Test application time and scan-in power estimates for
different ISCAS089 benchmark circuits. Finally, section 5 presents the
conclusions and future directions.

2. Gaps in the previous schemes

Literature review reveals that 9C approach brought a kind of break-
through in the run-length encoding technique as nine different cases
were being considered for test data encoding. However, limitation of
merging only two blocks at a time hampers the achievable compression
efficiency. BM-8C technique emerged to be an efficient approach as it
reduces the number of bits by merging subsequent blocks to form a
merged block which is further compressed using eight different codes.
However, it lags encoding the special cases like all zeroes (00), all
ones(11), a sub block of all zeroes followed by another sub block of all ones
(01) and one sub block of all ones followed by another sub block of all
ones (10) using lesser number of bits. Another issue associated with the
BM-8C technique is that it considers merging the compatible blocks till
first inversely compatible block is found ignoring the scope of compati-
bility with successive block. A codeword is generated and a new search is
started on the subsequent blocks to perform further merging. Techniques
3

like CCPRL and VPRL provide better compression by efficiently merging
both compatible and inverse compatible blocks. CCPRL technique excels
VPRL in terms of test data volume reduction by removing the unnec-
essary end bits. However, it has a limitation of adding extra bits corre-
sponding to a representation of unique blocks. At the same time, both
CCPRL and VPRL don't utilize the possibility of compression at the sub-
block level. The OSCCPRL scheme works on the short comings of
CCPRL and enhances the compression efficiency technique by utilizing
the compression at the block and sub-block levels. It also reduces the
redundant bits used to represent the unique blocks.

3. Adaptive block merging based test data compression
technique

The proposed Adaptive Block Merging based Test data Compression
(ABMTC) technique works on the improvement of BM-8C compression
efficiency by employing two-stage encoding approach. In the first-stage,
it attempts to merge both compatible (inverse) blocks to improvise the
compression at the block level. The information about the number of
blocks being merged and the type of compatibility between retained
pattern block and the ones being merged is preserved in the form of
count_code and relation bits respectively. In second stage, the retained
pattern is further compressed at the sub-blocks level. Finally, if a pattern
cannot be merged with its subsequent block, it is treated as unique (UV).
It is also examined for compression at the sub-block level. An inter/Intra
bit is used to signify if the block can be merged with its subsequent blocks
or not. If the block can be merged, the inter/intra block bit is set to high
‘1’ else, it is set to low ‘000 to represent uniqueness. The overall scheme
can be explained with reference to the flowchart shown in Fig. 1. The
detailed description of the encoding process is as follows:
3.1. Stage one encoding

As shown in Fig. 1, a pattern block (b bit long) is initialized and
compared with its subsequent block. Codeword used to encode the inter-
block merging consists of the retained pattern (pattern_code), count_code
and the relation code (compatibility code). Out of these, the retained
pattern is the representative block obtained after merging the subsequent
blocks, count_code represents the count of blocks being merged and the
relation code (compatibility code) consists of an array of length equal to
the decimal count held in count_code and its values is defined by the type
of compatibility between the retained pattern and block being merged



Table 2
Example of ABMTC.

BLOCKS Bit pattern (TD) Codeword and length Using ABMTC (TE) TE_ABMTC (bits) Codeword and length Using BM-8C TE_BM-8C (bits)

1 00XX0-0000X 0_0_000
Unique block with 00 bit pattern

5 0_11_00000
Unique block with Half_c bit pattern

8

2 10101_00111 0_1_0_ 1010100111
Unique block with UV bit pattern

13 0_00_1010100111
Unique block with UV bit pattern

13

3 X111X_11X10 0_0_111_11X10
Unique block with 1U bit pattern

10 0_01101_11X10
Unique block with 1U bit pattern

11

4 X111X_11X11 0_0_011
Unique block with 11 bit pattern

5 0_11_11111
Unique block with Half_c bit pattern

8

5 10111–01011 1_1_0_10,111–01011_101_01001
Six blocks merge with UV bit pattern

21 10_0_00_1011101011
Two block merge with unique bit pattern

15
6 XXX11-01XXX
7 01XXX-XX100 10_1_010

Two inverse block merge
6

8 XXX11-01XXX
9 XXX11-01XXX 10_0_11101_01XXX

Two block merge with 1U bit pattern
13

10 XXX11-01XXX
11 000XX-11111 0_0_001

Unique block with 01 bit pattern
5 0_10_11111 8

TOTAL BITS AFTER ENCODING 59 82

Fig. 2. Frequency of occurrence of ten sub cases at intra block level for various benchmark circuit.

Fig. 3. Statistics of various sub cases among the inter block merging for different count_code (CC) values.
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(successor). The relation bit is chosen to ‘1’ or ‘0’ to show the existence of
compatibility or inverse compatibility between the retained pattern and
the successor.

3.2. Stage two encoding

The retained pattern block so formed, is partitioned into two halves (of
length to b/2 each) to form two Half-Length Blocks (HLBs) which are
further compared against each other. The two HLBs are compared against
each other to examine for the existence of one of ten subcases, namely:
U0/U1/0U/1U/01/00/10/11/half_comp/half_invComp. The categoriza-
tion between various subcases is done using three bits called unique_-
intra_merge_prefix bit (UIMP) and tail bits. The UIMP bit is set to ‘0’ and ‘1’
corresponding to subcases U0/U1/0U/1U/01/00/10/11 and half_comp/
half_invComp respectively. The tail bits are further utilized to encode the
various subcases as shown in Table 1.

The compression efficiency can be improved further by selecting
4

different block lengths while merging the blocks. This is done as follows:
Each time inter block merge length has to be selected, block lengths of
different values are iteratively tried to find the compression efficiency.
The best value is chosen and saved as the preamble code. It represents the
length of the block being chosen for the codewords. The criteria for
selecting the pattern lengths are as follows: a) it has to be below five bits
as the frequency of occurrence of compatibility among the pattern blocks
of length more than 32 is very less; b) pattern blocks of larger sizes need
larger buffer lengths in the decoder design which increases their area and
c) Block length chosen should be an even value so that it can be sub-
divided into two equal sub-blocks easily. To ensure the test length to be a
multiple of the chosen block length, extra zeroes are appended at the end
of the test data without hampering the test information. Once the blocks
are encoding as per the inter/intra block merging, the leftover don't care
bits (if any) are filled with the same value as that of their preceding bits to
reduce the switching activity.

An example to show the implementation of ABMTC code, a random



Fig. 4. Decompressor architecture.

Fig. 5. FSM of Decompressor.

Table 3
Comparison of compression efficiencies (in percentage) achieved between ABMTC compression schemes and the various other techniques.

Test data compression technique

Benchmark circuit Mintest Golomb FDR EFDR 9C B.M 2n-PRL B.M-8C ABMTC

S5378 23,754 37.11 48.02 53.67 51.64 54.98 54.94 58.56 59.47
S9234 39,273 42.25 43.6 48.66 50.94 51.19 57.72 57.49 61.28
S13207 165,200 79.74 81.3 82.49 82.31 84.89 88.1 87.52 86.49
S15850 76,986 62.82 66.22 68.66 66.38 69.49 64.29 73.69 74.57
S38417 164,736 28.37 43.26 62.02 60.63 59.39 58.33 59.92 62.12
S38584 199,104 57.17 60.93 64.28 65.53 66.86 72.44 71.66 74.25
Average 51.24 57.22 63.29 62.38 64.46 65.97 68.14 69.69

Table 4
Comparison of decompression area overhead for ABMTC with other compression techniques.

Benchmark circuit FDR BM-8C 9C CCPRL HBMTC OSCCPRL ABMTC

S5378 7.8 12.8 8.2 9.6 12.5 10.7 10.1
S9234 5.9 9.7 6.2 7.3 9.2 8.3 8.3
S13207 3.5 5.8 3.7 3.5 5.10 4.2 3.8
S15850 3.6 5.9 3.8 3.7 4.5 3.9 3.9
S38417 1.4 2.3 1.5 1.8 2.2 2.2 2.3
S8584 1.5 2.5 1.6 1.9 2.5 2.5 2.6
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Table 5
Comparison of Test application time achieved for ABMTC with other compres-
sion techniques.

Circuits α FDR EFDR BM BM-8C ABMTC

S5378 2 24,933 17,075 16,018 15,088 14,780
4 16,803 13,172 12,239 11,191 11,334
6 15,259 12,096 11,183 10,348 10,040
8 14,039 11,652 10,899 10,089 9780

S9234 2 42,039 26,129 26,336 24,281 22,266
4 29,206 21,424 20,828 18,410 17,986
6 26,675 20,557 19,762 17,278 16,870
8 24,086 20,318 19,436 16,921 15,666

S13207 2 1,16,101 88,487 88,045 87,319 86,845
4 70,361 52,711 50,784 49,730 48,670
6 57,089 41,898 39,177 38,138 36,226
8 48,358 36,946 33,768 32,326 31,320

S15850 2 65,020 46,076 46,076 44,110 43,910
4 42,270 32,517 32,084 29,553 28,234
6 36,732 28,798 28,216 25,522 24,234
8 32,362 27,172 26,518 23,673 23,673

S38417 2 1,86,261 1,04,569 1,09,180 1,06,725 1,06,100
4 1,23,700 75,614 80,273 79,074 78,556
6 1,13,451 68,212 73,286 71,564 70,443
8 1,10,521 65,509 70,202 69,069 68,566

S38584 2 1,79,530 1,19,849 1,18,844 1,13,821 1,12,661
4 1,18,628 86,320 83,255 76,161 74,231
6 1,04,630 78,066 73,953 66,048 65,336
8 93,260 74,955 70,692 61,908 60,234
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test sequence of 110 bits: ‘00XX00000X1010100111X111X11X10X1
11X11X111011101011XXX1101XXX01XXXXX100XXX1101XXXXXX110
1XXXXXX1101XXX000XX11111’ is chosen. To ease out the explanation,
the block length has been fixed to be 10 bits resulting in the formation of
10 blocks (as shown in column 2 of Table 2). The codewords so devel-
oped are shown in second column of Table 2. For better illustration of
outperformance of ABMTC over BM-8C, outcomes of both the schemes
have been shown in columns 3 and 4 respectively. As evident from row
number 13, the sequence of 110 bits has been reduced to 59 and 82 bits
after application of ABMTC and BM-8C are 59 respectively. In the above
example (Table 2), Preamble width used to denote the block length has
been chosen to be 4 bits here, which justifies the use of any block length
(even value strictly) ranging from 1 to 24-1. To get better compression,
variable block lengths can be selected based on the best possible
compression at each attempt to decompress the test data.

Fig. 2 shows the statistics of the occurrence of eleven different sub-
cases for the benchmark circuits for the bit length of 10 bits. It may be
noted that the statistics will vary depending on the different bit lengths.

Also, it may be observed that the use of the bits for the count_code and
relation bits become more beneficial wherein the occurrence of the suc-
cessive compatible/inverse compatible blocks is more. Fig. 3 shows the
occurrence of the inter block merging for 3, 4 and 5 bit count_code's, or in
other words occurrence of merging 1–7, 1–15 or 1–23 number of blocks
being merge.
Table 6
Scan-in peak-power (Ppeak) and average-power (Pavg) transitions: Comparison with o

Mintest FDR EF

Benchmark circuit Ppeak Pavg Ppeak Pavg Pp

S9234 17,494 14,630 12,994 5692 12
S13207 135,607 122,031 101,127 12,416 97
S15850 100,228 90,899 81,832 20,742 63
S38417 683,765 601,840 505,321 172,665 40
S38584 572,618 535,875 234,233 136,634 47
Average 301,942 273,055 187,101 69,630 21
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4. Decompression architecture

The decompression design for the retrieving the original test stream is
quite straightforward. Herein, the CUT is considered to be single scan
chain based testable design. Its conceptual view is shown in Fig. 4. It
comprises of an FSM, two counters, a 32-bit buffer register, 4-bit MUXes
(one for each bit of the block length) and a shift register. A 32 bit is
chosen as the maximum buffer size to limit the possibility of overhead.
The whole design is fed with four incoming signals: TestClk, SoCClk,
TestData_in, Sync and outgoing signal: TestData_out. The compressed data
stream TestData_in is provided to the decompressor at the ATE frequency
(TestClk), which after decompression is delivered to the CUT (SOC) at its
functional clock SoCClk through TestData_out. The function of the Sync
signal is to synchronize the ATE and SOC clocks. The circuit has two
counters: counter1: used to receive the block/sub-block length and
counter 2: used to extract the relation bits with its count specified by the
count code (used for inter-block merging case). The working of each
block is as described below:

FSM generates the necessary control signals depending upon the
status of the received codewords. Quite straightforward from its working
point of view, it gets disintegrated into two categories on the basis of
inter/intra bit. A partial diagram of the FSM is shown in Fig. 5. If the
value of inter/intra is set to high and low, it reflects the existence of inter-
level block merging and unique block respectively.

Based on the control signals generated by the FSM signifying, the
scratch register is fed with b bit data (UV case), b/2 bit length (UU/UU’/
U0,U1,0U and 1U sub cases) through the TestData_in signal. The sel[1:0]
bits received from the FSM further specify whether the shift register has
to be fed with 0/1/b/compliment of b. It may be noted that the 4- bit
MUX shown in Fig. 4 signify group of Muxes dedicated for each bit to be
filled in the shift register to complete the test block information.

In case of the intra block (HLB) merging, the status of the group code
and UIMP bits determines the status of the sel[1:0] bits which in turn
control the working of MUX and counters used in the decompressor
design. The sel[1:0] bits are set to 10 levels to signify the occurrence of
inverse compatible case. The decompression process is initiated by
receiving the preamble (block length). The moment it is done, a value is
held internally. The upcoming bits signify the occurrence of different
cases and subcases (as shown in Table 1). The FSM generates the
respective select/control signals. For the cases of UU/UU’/U0/U1/0U/
1U, the counter 1 is enabled to count till Half the block. The signal done1
is set to remain in Low state from the start of the counting process to the
end. Until a High on the done1 signal of the counter1 is not received, the
data on the TestData_in is forwarded to the scratch register. This fills the
value of the unique bits of the HLB while the rest of the bits and their
placement in the scratch register are specified based on the appropriate
signals generated by the FSM. In the case of Interblock merging, counter
2 is made to count down from the count_code value received. Meanwhile,
at each count pulse (from the start of the countdown to the occurrence of
High on done2 signal), the status of the relation code bits decides whether
the value of the scratch register or its complement has to be forwarded to
ther compression methods.

DR LPSC ABMTC

eak Pavg Ppeak Pavg Ppeak Pavg

,062 3469 12,102 3512 12,200 3524
,613 8016 97,685 7849 97,780 7888
,494 13,394 63,586 13,498 63,760 13,834
4,654 117,834 404,676 112,235 405,447 112,244
9,547 89,138 479,748 89,428 478,468 89,650
1,474 46,370 211,559 45,304 211,531 45,428
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the circuit under test. In case of the fixed block length the preamble bits
once received are expected to represent its block length else, the moment
the counter2 gets decremented to zero, a reset is generated for FSM
leading to a scan in of a new block length. The test data so retrieved is
applied to the circuit under test using the TestData_out signal, SoCclk, and
scan_en signal. In case of non-occurrence of any compatibility among the
sub-blocks of the pattern, the counter1 helps to retrieve the original data
packet held intact in the encoded stream.

5. Experimental results

In order to validate the efficiency of the proposed technique, com-
parisons are done with previous techniques using benchmark circuits.
The test sets generated by Mintest Automatic Test Pattern Generator
(ATPG) [25] for Six large ISCAS’ 89 benchmark circuits are taken as
input and fed to the various compression algorithms.

5.1. Compression efficiency

The compression efficiency (in %age) of an encoding scheme can be
calculated by using Equation (1).
The compression efficiency ðηÞ ¼ uncompressed data ðTDÞ � compressed ðTEÞ
uncompressed data ðTDÞ *100 (1)
The value of ƞ obtained for different benchmark circuits is shown in
Table 3. To show the performance of the ABMTC, results of other
schemes like Golomb [18], FDR [19,20], Enhanced False Discovery Rate
(EFDR) [26], 9C [21], BM [27], CCPRL [23], 2n-PRL (Pattern
Run-Length) [28], BM-8C [22] have also been included in Table 3. The
uncompressed test data as per the Mintest ATPG are shown in column1.
By comparing the columns 2–8, it can be stated that the ABMTC out-
performs other techniques in most of the cases. It may be noted that the
block length was chosen to be of five bits which can support variable
block lengths (as explained in section 3) and is best suitable for achieving
higher compression.

5.2. Comparison of the decoder area

The hardware overhead of the decoder of ABMTC (modelled using
Verilog HDL and synthesized using Encounter Register Transfer Lan-
guage (RTL) compiler from Cadence with 1.8 V, TSMC 180 nm CMOS
standard cell library) is presented in Table 4. The full-scan ISCAS089
benchmark circuits are synthesized with a single scan chain. The decoder
area overhead can be calculated using equation (2).

Area Overhead¼ Area of decoder
Area of benchmark circuit

*100 (2)

By analysing the results obtained, it is apparent that the decoder
overhead of ABMTC is close to CCPRL. Though, it is larger than 9C but,
the advantage of increased compression efficiency advocates its
application.

5.3. Comparison of test application time (TAT)

As explained in section 4, the compressed data is delivered to the SoC
periphery at ATE clock frequency (TestClk). The decompressor helps to
retrieve the original test stream which is applied to the circuit under test
at SoCClk. To ensure the synchronization between the two clocks, SoCClk
is chosen to be an integer multiple of TestClk. Let the frequency ratio be
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α ¼ SoCClk/TestClk as given in Equation (3). Assuming the compressed
test data has M code words C (1)�C(m) and each codeword has a length
of W(i) (i ¼ 1, 2, … …,m).

Let αmax ¼max2<i<MðHði� 1Þ =WðiÞÞ (3)

where H (i-1) is the length of decompressed test data for the codeword C
(i-1). If α � αmax, minimum TAT can be calculated as [22,23].

TATmin¼
XM
i

W
�
i
�þð½maxðHðMÞ� ðα� 2Þ�Þ = α (4)

If α < αmax, the ATE will be stalled several cycles to wait for the SoC
to apply the decoded test data, which occurs when the time consumed for
ATE to send the codeword C(i) to Finite State Machines (FSM) is shorter
than the time consumed for the CUT to apply the decoded test data of the
previous codeword C (i-1). Then, the total TAT will be calculated as:

TAT ¼TATminþ
XM
i¼2

fmaxðHði� 1Þ�wðiÞ*α; 0g
,

α (5)

The TAT values calculated as per equations (4) and (5) for different
benchmark circuits and α values are presented in Table 5. Results are
compared with the TAT obtained for other compression techniques like
FDR, EFDR, BM, BM-8C, as evident from the table, proposed ABMTC
offers much-reduced Test application time. The process of parallel de-
livery of test data from ATE and its application to the CUT helps in the
reduction of the test application time.
5.4. Comparison of switching power dissipation

One common metric used to estimate the test power is the Weighted
Transitions Metric (WTM). The WTM is strongly correlated to the
switching activity in the internal nodes of CUT during scan-shift opera-
tion [20]. showed experimentally that scan vectors with higher WTM
dissipate more power in CUT. Let us say that a scan chain of length t is
being dealt with and a scan vector lj ¼ lj;1lj;2 … ….lj;t, and lj;1 is scanned
before lj2. The value of the WTM can be calculated for inputs as well as
their responses by the following equation

WTMj ¼
Xt�1

i¼1
ðt� iÞ�lj;i � lj;iþ1

�
(6)

with the help of the above equation, we can also calculate the peak
ðPpeakÞ and the average ðPavgÞ power as follows:

Pavg ¼
Pn

j¼1

Pt�1
i¼1ðt� iÞ�lj;i � lj;iþ1

�
n

(7)

Ppeakmaxj2ð1;2::nÞ

( Xt�1

i¼1

ðt� iÞ
 
lj;i � lj;iþ1

)
(8)

Equations (6)–(8) can be used to calculate the average and peak
power for four different benchmark circuits. To results of the scan in peak
and average power as obtained for different benchmark, circuits have
been compared with other schemes like FDR [19,20], EFDR [26], LPSC
[24] as shown in Table 6. It may be noted that reduction in the switching
power has occurred by filling don't care bits with 00/01/10 and 11
patterns thereby reducing the unnecessary transitions. Also, don't care
bits left after performing the block merging are filled with same status as
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that of neighbouring bits to avoid extra switching. It may be noted that
the peak and average power consumption, however, suffers in compari-
son to what has been achieved using LPSC. Better results could have been
achieved if test vectors were initially re-arranged on the basis of occur-
rence of don't care bits such that run lengths of all zeroes or all ones could
be increased. However, for that one needs to ensure that the order of test
vectors dedicated for sequential circuits is not altered else, the fault
coverage may suffer.

6. Conclusions and future scope

The test data compression is a very promising technique to reduce the
test data volume and challenges of test application time. This paper
proposed an adaptive block merging technique for test data compression.
It improves the test data compression efficiency being immune to the
underlying structural details of the circuit under test. As per the simu-
lation results of the application of the ABMTC on various ISCAS089
benchmark circuits, it can be seen that the average compression effi-
ciency is increased by 2–20% in comparison to the previously proposed
techniques. The average and peak test powers can also be reduced by
employing this technique. Being very small, it seems to be feasible at the
deep submicron level. As evident from the experimental results, the test
application time is also reduced by 20% using this scheme. Although,
ABMTC helps achieves better data compression but, it can still be worked
upon to enhance its ability to reduce test power. Based on the fact that
test power is dependent on the switching activity, the test vectors can be
divided into two categories. First category includes the test vectors which
can help in saving power by increasing run lengths of zeroes and ones
while the second helps in reduction of test data. Statistical and Code
based approaches can be amalgamated to enhance the power saving and
data compression.
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