
42

QoS-Aware Autonomic Resource Management in Cloud Computing:
A Systematic Review

SUKHPAL SINGH and INDERVEER CHANA, Thapar University, Patiala

As computing infrastructure expands, resource management in a large, heterogeneous, and distributed
environment becomes a challenging task. In a cloud environment, with uncertainty and dispersion of re-
sources, one encounters problems of allocation of resources, which is caused by things such as heterogeneity,
dynamism, and failures. Unfortunately, existing resource management techniques, frameworks, and mech-
anisms are insufficient to handle these environments, applications, and resource behaviors. To provide
efficient performance of workloads and applications, the aforementioned characteristics should be addressed
effectively. This research depicts a broad methodical literature analysis of autonomic resource management
in the area of the cloud in general and QoS (Quality of Service)-aware autonomic resource management
specifically. The current status of autonomic resource management in cloud computing is distributed into
various categories. Methodical analysis of autonomic resource management in cloud computing and its tech-
niques are described as developed by various industry and academic groups. Further, taxonomy of autonomic
resource management in the cloud has been presented. This research work will help researchers find the
important characteristics of autonomic resource management and will also help to select the most suitable
technique for autonomic resource management in a specific application along with significant future research
directions.

Categories and Subject Descriptors: A.1 [General Literature]: Introductory and Survey; C.0 [General]:
Systems Architectures; C.2.4 [Computer-Communication Networks]: Distributed Systems; D.4.1 [Pro-
cess Management]: Scheduling; H.3.4 [Systems and Software]: Distributed Systems; J.7 [Distributed
Parallel and Cluster Computing]; K.6.2 [Management of Computing and Information Systems]:
Installation Management

General Terms: Documentation, Cloud Computing, Methodical Analysis, Theory, Management

Additional Key Words and Phrases: Resource provisioning, cloud computing, autonomic management,
service-level agreement, quality of service, grid computing, resource scheduling, autonomic cloud comput-
ing, autonomic computing, self-management, self-optimizing, self-protecting, self-healing, self-configuring,
resource management

Sukhpal Singh gratefully acknowledges the Department of Science and Technology (DST), Government of
India, for awarding him the INSPIRE (Innovation in Science Pursuit for Inspired Research) Fellowship
(Registration/IVR Number: 201400000761 [DST/INSPIRE/03/2014/000359]) to carry out this research work.
Mr. Singh received the Gold Medal in Master of Engineering in Software Engineering. Mr. Singh is on the
Roll-of-honor being the DST Inspire Fellow as an SRF Professional under the INSPIRE Fellowship. We
would like to thank all the anonymous reviewers for their valuable comments and suggestions for improving
the article. We would like to thank Dr. Maninder Singh [EC-Council’s Certified Ethical Hacker (C-EH)] for
useful suggestions.
Authors’ addresses: S. Singh, Computer Science and Engineering Department, Thapar University, Patiala,
Punjab, India-147004; email: ssgill@thapar.edu; I. Chana, Computer Science and Engineering Department,
Thapar University, Patiala, Punjab, India-147004; email: inderveer@thapar.edu.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for
components of this work owned by others than ACM must be honored. Abstracting with credit is permitted.
To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this
work in other works requires prior specific permission and/or a fee. Permissions may be requested from
Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2015 ACM 0360-0300/2015/12-ART42 $15.00
DOI: http://dx.doi.org/10.1145/2843889

ACM Computing Surveys, Vol. 48, No. 3, Article 42, Publication date: December 2015.

http://dx.doi.org/10.1145/2843889

42:2 S. Singh and I. Chana

ACM Reference Format:
Sukhpal Singh and Inderveer Chana. 2015. QoS-aware autonomic resource management in cloud computing:
A systematic review. ACM Comput. Surv. 48, 3, Article 42 (December 2015), 46 pages.
DOI: http://dx.doi.org/10.1145/2843889

1. INTRODUCTION AND MOTIVATION

Cloud computing offers pay-per-use-based services such as infrastructure, platform,
and software through different cloud providers [Caton et al. 2013]. As the cloud offers
these three types of services, it requires Quality of Service (QoS) to efficiently monitor
and measure the delivered services and further needs to follow Service-Level Agree-
ments (SLAs) to ensure their efficient delivery. However, providing dedicated cloud
services that ensure users’ dynamic QoS requirements and avoid SLA violations is a
big challenge in cloud computing. Currently, cloud services are provisioned and sched-
uled according to resources’ availability without ensuring the expected performances.
The cloud provider should evolve its ecosystem in order to fulfill QoS-aware require-
ments of each component of the cloud. To realize this, there is a need to consider two
important aspects that reflect the complexity introduced by the cloud management:
QoS-aware and self- or autonomic management of cloud services. The QoS-aware as-
pect involves the capacity of a service to be aware of its behavior to ensure the elasticity,
high availability, reliability of service, cost, time, and so forth [Lango 2014]. Self- or
autonomic management implies the fact that the service is able to self-manage itself as
per its environment’s needs. Therefore, significant challenging tradeoffs exist to ensure
that the QoS guarantees and performance are met by improving cost-effectiveness and
resource utilization. Based on human guidance, autonomic systems keep the system
stable in unpredictable conditions and adapt quickly in new environmental conditions
like software, hardware failures, and so forth. Autonomic systems are working based on
QoS parameters and are inspired by biological systems that can easily handle problems
like uncertainty, heterogeneity, and dynamism. Based on QoS requirements, autonomic
systems provide self-optimization and manage the complexity of a system in a proac-
tive way to reduce cost. The main issues in this context are as follows: (1) there is
no single provider that provides autonomic services and (2) only AWS (Amazon Web
Service) currently delivers integrated autonomic services with a very low degree of cus-
tomization. In existing autonomic systems, only a few QoS parameters are considered
[Yeo et al. 2010]. There is a need for an autonomic resource management system that
considers all the important QoS parameters like availability, security, execution time,
SLA violation rate, and so forth for better resource management [Huebscher et al.
2008; Simonin et al. 2013].

In the cloud environment, uncertainty and dispersion of resources cause problems
in allocation of resources [Salehie et al. 2005], which result for many reasons, such as
the following:

a. Heterogeneity (due to different types of resources and scheduling techniques)
b. Dynamism (detect and fulfill the requirements of the application at runtime)
c. Failures (failure of system or resources, which leads to performance degradation)

Unfortunately, present cloud computing systems and management techniques are
unable to handle the aforementioned problems efficiently at runtime. To overcome
these problems, cloud systems should contain self-management characteristics like
self-optimizing, self-healing, self-protecting, and self-configuring. Thus, there is a need
to automatically manage QoS requirements of cloud users, thus helping the cloud
providers achieve the SLAs and avoid SLA violations. Autonomic cloud computing
systems can provide the environment in which applications can be managed efficiently

ACM Computing Surveys, Vol. 48, No. 3, Article 42, Publication date: December 2015.

http://dx.doi.org/10.1145/2843889

QoS-Aware Autonomic Resource Management in Cloud Computing: A Systematic Review 42:3

by fulfilling QoS requirements of applications without human involvement [Kim et al.
2009].

1.1. Need for Autonomic Cloud Computing

The cloud services delivered by the heterogeneous and dynamic nature of the cloud re-
sources depend on the QoS. Fulfilling QoS requirements and maximizing the efficiency
and dispersion, heterogeneity, and uncertainty of resources bring challenges to cloud
computing systems, which cannot be efficiently satisfied with traditional resource allo-
cation policies in the cloud environment [Erdil 2013]. Autonomic cloud computing can
provide one of the solutions for effective allocation of resources by fulfilling the QoS
requirements of users and healing unexpected failures at runtime automatically, thus
optimizing QoS parameters [Mohamed et al. 2014]. The first objective of autonomic
cloud computing is to identify and schedule the suitable resources for the appropriate
workloads on time to increase the effectiveness of resource utilization. In other words,
the amount of resources should be minimum for a workload to maintain a required level
of service quality or to minimize the workload completion time (or maximize through-
put) of a workload automatically [Zhan et al. 2015]. For better resource scheduling,
best-resource workload mapping is required. The second objective of autonomic cloud
computing is to identify the adequate and suitable workload that supports the schedul-
ing of multiple workloads, to be capable to fulfill numerous QoS requirements such as
CPU utilization, availability, reliability, security, and so forth for the cloud workload.
Therefore, resource scheduling considers the execution time of every distinct workload
but also, most importantly, the overall performance based on the type of workload, that
is, with different QoS requirements (heterogeneous workloads) and with similar QoS
requirements (homogenous workloads) [Singh et al. 2015].

1.2. Motivation for Research

• Resource scheduling in the cloud consists of dynamic allocation of provisioned re-
sources to cloud workloads automatically. Consequently, this study emphasizes au-
tonomic resource management techniques based on different scheduling criteria.

• We recognized the necessity of a methodical literature survey after considering pro-
gressive research in autonomic resource management techniques in cloud comput-
ing. Therefore, we have summarized the available research based on a broad and
methodical search in the existing database and present the research challenges for
advanced research.

1.3. Our Contributions

• A comprehensive investigation has been conducted to study various existing au-
tonomic resource management techniques in cloud computing accomplished by in-
depth learning of autonomic resource provisioning and scheduling techniques.

• The aforementioned autonomic resource management techniques have been com-
pared and categorized based on the common characteristics and properties of self-
management (self-healing, self-configuring, self-optimizing, and self-protecting).

• Future research directions in the area of QoS-aware autonomic resource manage-
ment in the cloud are presented.

1.4. Related Surveys

Earlier surveys by Buyya et al. [2012] and Rahman et al. [2011] have been very in-
novative, but as the research has persistently grown in the field of autonomic cloud
computing, there is a necessity for a methodical literature survey to evaluate, upgrade,
and integrate the existing research presented in this field. This research augments the
previous surveys and presents a fresh methodical literature survey to evaluate and

ACM Computing Surveys, Vol. 48, No. 3, Article 42, Publication date: December 2015.

42:4 S. Singh and I. Chana

Fig. 1. Evolution of autonomic computing.

discover the research challenges based on available existing research in the field of
autonomic resource management in cloud computing.

1.5. Article Organization

The organization of the rest of this article is as follows: The history of autonomic
computing is presented in Section 2. Section 3 presents the background of autonomic
cloud computing. Section 4 describes the review technique used to find and analyze the
available existing research, research questions, and search criteria. Section 5 presents
the extraction outcomes of the methodical literature survey. Section 6 describes the
phases of autonomic resource management in the cloud. Section 7 presents QoS-aware
autonomic resource management techniques and their comparisons and taxonomy of
autonomic resource management. Section 8 describes the perspective model of auto-
nomic resource management. Future research directions are described in Section 9,
and discussions are presented in Section 10. Section 11 concludes this research work.

2. HISTORY OF AUTONOMIC COMPUTING

Autonomic computing is a self-manageable computing system, and the word “auto-
nomic” originated from the biological area. The human body works in a self-regulating
manner without human intervention. Autonomic systems are inspired by the biolog-
ical system (autonomic nervous system) that can easily handle problems like uncer-
tainty, heterogeneity, dynamism, faults, and so forth. Based on human guidance, au-
tonomic systems keep the computing system stable in unpredictable conditions and
adapt quickly in new environmental conditions like software and hardware failures.
Due to the self-management property of computing systems, the complexity of the sys-
tem is also invisible to the user. Just as the Autonomic Nervous System (ANS) controls
the human body’s functions (breathing, digestion, etc.), autonomic systems control the
working of computing systems and applications without the involvement of humans.
In this section, the evolution of autonomic computing is discussed briefly in the field of
computer science along the path of 21st century.

2.1. Evolution of Autonomic Computing

In the early 1990s, researchers of different prestigious organizations started devel-
opment of self-managing or autonomic systems because of the complexity and het-
erogeneity of computing systems, and research on autonomic systems continued for a
whole decade [Rahman at al. 2011]. The evolution of autonomic computing is shown
in Figure 1. For military purposes, DARPA (the Defense Advanced Research Projects
Agency) started a preliminary autonomic project in 1997, called the Situational Aware-
ness System (SAS) [Defense Advanced Research Projects Agency 1997]. The purpose
of SAS was to get information about enemies (to detect enemy tanks in the battlefield)

ACM Computing Surveys, Vol. 48, No. 3, Article 42, Publication date: December 2015.

QoS-Aware Autonomic Resource Management in Cloud Computing: A Systematic Review 42:5

on their personal devices using personal communications. Decentralized P2P (Peer-
to-Peer) mobile adaptive routing was used to spread information to all the soldiers.
For space projects (MarsPathfinder and Deep Space-1), NASA used autonomic sys-
tems in 1998 to make a space probe quickly by adapting extraordinary situations
automatically [Muscettola et al. 1998]. Under these projects, NASA designed tempo-
ral planning based on Autonomous Agents (AAs). Therefore, autonomous operations
were performed by spacecraft for long durations. In 2000, an autonomic-system-based
project was launched by DARPA, called DASADA (Dynamic Assembly for Systems
Adaptability, Dependability, and Assurance), to reduce the complexity of distributed
systems, and it fulfilled requirements such as adaptability, dependability, and high
assurance [Mandak and Stowell 2000].

In 2001, the journey of autonomic computing was started by IBM. IBM developed an
autonomic computing system to reduce the increasingly rising complexity of managing
computing systems, which further helped to reduce the workload of administrators
[Horn 2001]. An architectural blueprint of an autonomic computing system was intro-
duced in 2003 [Kephart and Walsh 2003], in which IBM proposed four properties of
self-management (self-optimizing, self-healing, self-protecting, and self-configuring),
discussed in Section 6.5. In 2005, IBM became the leader of autonomic computing and
started developing autonomic-computing-based toolkits like Tivoli [2005]. Different au-
tonomic computing development tools were offered by IBM to increase the adoption of
autonomic computing; one famous tool was developed for making autonomic decisions
based on rules embedded in a software application called PMAC (Policy Management
Autonomic Computing). In 2005, Parashar and Hariri proposed an autonomic system
in the context of grid computing to reduce the complexity of heterogeneous and dy-
namic components. This autonomic system also provides features like management,
deployment, and composition of complex applications in the grid [Parashar and Hariri
2005]. Other existing autonomic systems in the grid are Aneka, Condor-G, Nimrod-G,
and Pegasus [Rahman et al. 2011]. In 2009, the concept of autonomic computing in
the cloud was introduced to deliver autonomic cloud services to users by considering
reliability and scalability as important QoS parameters [Kim et al. 2009]. Fulfilling
QoS requirements and maximizing the efficiency of cloud systems by using the concept
of autonomic computing cannot be efficiently satisfied with traditional resource allo-
cation policies in the cloud environment. The next section explains autonomic cloud
computing in detail.

3. AUTONOMIC CLOUD COMPUTING: THE BACKGROUND

Autonomic systems based on QoS parameters are inspired by biological systems that
can easily handle problems like uncertainty, heterogeneity, dynamism, faults, and so
forth. The goal of autonomic systems is to execute an application within a deadline by
fulfilling QoS requirements as described by users with minimum complexity. Autonomic
computing systems are basically inspired from the ANS of humans. The ANS has
the capability to deal with all situations dynamically and manage these situations
in an unpredictable environment. As the ANS controls the human body’s functions
(breathing, digestion, etc.), Autonomic Cloud Computing Systems (ACCSs) control the
working of cloud-based systems and applications without the involvement of humans.
Similar to the ANS, ACCSs check, monitor, and respond according to the situation,
such as self-healing, self-protecting, self-configuring, and self-optimizing.

3.1. Overview of Autonomic Cloud Computing

ACCSs are based on IBM’s autonomic model [Kephart and Walsh 2003], which con-
siders four steps of the autonomic system (Monitor, Analyze, Plan, and Execute) in a

ACM Computing Surveys, Vol. 48, No. 3, Article 42, Publication date: December 2015.

42:6 S. Singh and I. Chana

Fig. 2. Architecture of an autonomic system.

control loop, two interfaces (sensors and effectors) for environmental interaction, and
one database (knowledge base) to store rules, as shown in Figure 2.

ACCSs are composed of Autonomic Elements (AEs); the Autonomic Manager (AM)
is an intelligent agent that interacts with the environment through manageability
interfaces (Sensors and Effectors) and takes actions according to the input received
from sensors and rules defined in a knowledge base in low-level language. The AM is
configured by the administrator based on alerts and actions in high-level language.
Figure 19 shows the interaction of IBM’s autonomic model with cloud computing as
described in Section 8.

Initially, Monitors are used to collect the information from sensors for monitoring
continuously the value of QoS parameters while interacting with outside interfaces
and transfer this information to the next module for further analysis. The Analyze and
Plan modules start analyzing the information received from the monitoring module and
make a plan for adequate actions for corresponding alerts generated by the system.
Once data has been analyzed, this autonomic system executes the actions correspond-
ing to the alerts automatically [Rimal et al. 2011]. Executor implements the plan after
complete analysis. Maintaining the value of QoS parameters is the main objective of
Executor. Based on the output given by analysis, Executor tracks the new changes and
takes action according to the rules described in the knowledge base. Effector is used
to transfer the new policies, rules, and alerts to other nodes of the autonomic system
with updated information.

3.2. Self-Management Properties of Autonomic Cloud Computing

Self-management in cloud computing has four generic properties: (1) self-healing, (2)
self-protecting, (3) self-optimizing, and (4) self-configuring, as shown in Figure 3. A
description and example of self-management properties are presented in Table I.

3.3. Evolution of Autonomic Cloud Computing

This section describes the QoS parameters in which the resource management is pro-
posed across the backstory of the cloud. Further remarkable Quality of Service (QoS)
parameters and Focus of Study (FoS) of autonomic cloud computing along with evo-
lution of the cloud throughout the years are described in autonomic cloud computing
evolution, as shown in Figure 4. In 2009, workload-provisioning-based [Quiroz et al.
2009] autonomic techniques and self-optimization-based [Nallur et al. 2009] autonomic
techniques have been proposed. Quiroz et al. [2009] proposed a clustering-based de-
centralized approach to detect patterns in virtual environments, and a model-based
approach had been designed to monitor the performance and approximate service time
of the application to maintain the SLA.

ACM Computing Surveys, Vol. 48, No. 3, Article 42, Publication date: December 2015.

QoS-Aware Autonomic Resource Management in Cloud Computing: A Systematic Review 42:7

Fig. 3. Self-management in the cloud.

Table I. Self-Management Properties

Self-Management Property Description Example
Self-healing Capability of an autonomic

system to identify, analyze, and
recover from unfortunate faults
automatically

Improves performance through
fault tolerance by reducing or
avoiding the impact of failures
on execution

Self-configuring Capability of an autonomic
system to adapt to the changes
in the environment

Installation of missed or
outdated components based on
the alert generated by the
system without human
intervention

Self-optimizing Capability of an autonomic
system to improve the
performance

To complete the execution of
current workload and reduce
overloading and underloading of
resources

Self-protecting Capability of an autonomic
system to protect against
intrusions and threats

To detect and protect the
autonomic system from
malicious attacks

Nallur et al. [2009] presented a self-optimization-based autonomic technique using
utility theory to maintain the SLA and considered QoS requirements such as scalability
and availability. This theoretical technique is difficult to identify the SLA deviation and
SLA violation in case of performance degradation.

In 2010, autonomic techniques based on anomaly detection [Smith et al. 2010], SLA
awareness [Bouchenak 2010], and deadlines and budgets [Mao et al. 2010] were sug-
gested. Smith et al. [2010] presented an autonomic anomaly detection technique in
which data was analyzed and stored in a uniform format after data collection to detect
the faulty nodes. In this technique, Bayesian Network-based Dimensionality Reduc-
tion is used to extract the relevant data to reduce the computation overhead and
increase accuracy; thus, complexity to handle the anomalies is increased due to the
use of an unsupervised learning technique. Bouchenak [2010] presented an SLA-based
technique for elastic clouds to meet the QoS requirements of cost and availability and
also discussed the impact of SLA violations on performance. To deliver cloud services
with an SLA guarantee, there is a need to specify the value of SLA deviation along
with a penalty or compensation in case of SLA violations. Mao et al. [2010] proposed
an autoscaling technique (Cloud Auto Scaling (CAS)) in which computing resources
are scaled based on performance requirements and workload information in virtual
environments. CAS schedules activities of VM instance startup and shutdown auto-
matically to improve the performance. CAS enables users to finish the execution of

ACM Computing Surveys, Vol. 48, No. 3, Article 42, Publication date: December 2015.

42:8 S. Singh and I. Chana

Fig. 4. Evolution of autonomic cloud computing.

workloads or tasks within their deadline with minimum cost. The VM manager main-
tains a relation between cloud providers and the auto-scaling mechanism and executes
a plan of the auto-scaling decision maker to finish the execution of workloads.

In 2011, autonomic techniques based on fault tolerance [Malik and Huet 2011],
markets [You et al. 2011], hybrids [Papuzzo and Spezzano 2011], and SLA aware virtu-
alization [Kertesz et al. 2011] were proposed. To adapt, manage, enact, and configure
the workflows, this technique used a P2P agent-based framework, but this mechanism
is not able to share information among different nodes because of decentralization of
data.

Malik and Huet [2011] proposed a forward- and backward-mechanism-based auto-
nomic technique (Adaptive Fault Tolerance in Real-Time Cloud (AFRTC)) in a virtual
environment to identify the faults through a checkpoint protocol. The AFRTC system
is used to detect the faults, provide fault tolerance, and calculate the reliability of

ACM Computing Surveys, Vol. 48, No. 3, Article 42, Publication date: December 2015.

QoS-Aware Autonomic Resource Management in Cloud Computing: A Systematic Review 42:9

nodes to make decisions. The reliability of nodes in virtual environments is changing
adaptively. A node is reliable if a virtual node produces results within the specified
deadline only. A node will be removed if it fails continually, and a new node will be
added. AFRTC uses backward recovery if any node does not achieve the required level
of reliability. You et al. [2011] proposed a market-based autonomic technique (Auto-
nomic Allocation of Resources technique (ARAS-M)) by considering QoS requirements
using a genetic algorithm to maintain an equilibrium state between service and re-
quest. ARAS-M uses a market-based mechanism to allocate the resources to workloads
based on QoS requirements specified by the user. In this autonomic system, a Genetic
Algorithm (GA) is used to attain an equilibrium state by adjusting price automatically.
This system fulfills the demand of every workload along with its QoS requirements.
Papuzzo and Spezzano [2011] proposed a bio-inspired-mechanism-based hybrid auto-
nomic technique to handle peak load situations to reduce workload variations. Kertesz
et al. [2011] proposed an SLA-aware-virtualization-based autonomic technique that fo-
cused on demand deployment, service brokering, and agreement negotiation to reduce
SLA violations. This technique executes only homogenous workloads on homogenous
resources, and due to dependency among different modules, SLA violations cannot be
identified until the execution is completed.

In 2012, self-healing [Li et al. 2012], self-configuration [Zhang et al. 2012], and
energy-based [Ardagna et al. 2012] autonomic techniques were proposed. Li et al.
[2012] proposed a monitoring- and recovery-based self-healing technique to fulfill and
verify the QoS requirements (reliability to identify faults at runtime) described by
users. Zhang et al. [2012] proposed a power-aware adaptive autonomic technique that
configures virtual resources based on power usage and SLA requirements. In this
approach, the relation between resource utilization and energy consumption is not
clearly mentioned, and it considers power consumption of the CPU directly without
considering the power consumption of every independent component to get an accurate
value. Ardagna et al. [2012] presented an autonomic technique based on dynamic
voltage frequency scaling using a local search procedure to execute the realistic and
synthetic workloads in an effective manner to reduce energy cost and SLA violations.
This technique does not sufficiently explain the different variations among realistic
and synthetic workloads.

In 2013, adaptive-based [Maurer et al. 2013], self-protecting [Yuan et al. 2013], and
cost-based [Konstantinou et al. 2013] autonomic techniques were proposed. Maurer
et al. [2013] proposed an SLA-based autonomic technique (Case Base Reasoning (CBR))
based on an autonomic control loop to execute both synthetically generated workloads
after classification using a rule-based and case-based reasoning approach. CBR uses
human-based interaction to make an agreement between the user and provider called
SLA for successful execution of workloads by considering resource utilization and scal-
ability as QoS requirements. In this system, various elastic levels are defined and
a control loop is used to enable the autonomic computing in a virtual environment.
SLA violations and resource utilization are improved in this autonomic system. Yuan
et al. [2013] presented a rainbow-architecture-based ABSP (Architecture-Based Self-
Protection) technique in which security threats are detected at runtime through the use
of patterns. ABSP reduces security breaches and improves the depth of defense. The
Self-COngured, Cost-based Cloud qUery Services (COCCUS) technique [Konstantinou
et al. 2013] uses centralized architecture to provide the query-based facility in which
users can ask queries regarding scheduling policies, priorities, and budget information.
CloudDBMS is used to store information about the scheduling policies and user queries
for further use. The main objectives of COCCUS are to (1) get and execute the user
queries, (2) store the queries in the data structure, and (3) minimize the maintenance
cost of query execution.

ACM Computing Surveys, Vol. 48, No. 3, Article 42, Publication date: December 2015.

42:10 S. Singh and I. Chana

In 2014, a dynamic workload distribution [Sah and Joshi 2014] autonomic technique
was proposed. Sah and Joshi [2014] proposed a dynamic workload-distribution-based
autonomic technique (Autonomic Workload Manager (AWM)) using dynamic scalabil-
ity and a modified auto-scaling algorithm to provide the solution for flat separable
queuing network models. AWM uses DPSMS (Distributed Provisioning and Scaling
Decision Making System) to distribute the workloads on resources based on their com-
mon QoS characteristics. AWM divides resources into two categories: coarse-grained
and fine-grained resources. AVM allocates the resources based on minimum response
time and high throughput. This autonomic system executes in three steps: (1) allocate
resources to workloads, (2) minimize execution time, and (3) check execution status (if
it executes within time and budget then it continues execution; otherwise, provide more
resources).

In 2015, an autonomic technique based on resource contention-aware scheduling
[Sheikhalishahi et al. 2015] was proposed. Sheikhalishahi et al. [2015] proposed the
ARCS (Autonomic Resource Contention Scheduling) technique for a distributed system
to reduce resource contention in which more than one job shares the same resource
simultaneously. ARCS has four main components: (1) front-end policies (it performs
admission control and queuing of jobs), (2) scheduler (it contains a backfilling schedul-
ing algorithm), (3) information service (information about scheduler), and (4) back-end
policies (mapping of resources with jobs). ARCS established a relationship among lay-
ers of distributed resource management [Maurer et al. 2011].

3.4. QoS-Aware Cloud

The settlement between consumers and cloud service providers fundamentally con-
sists of parameters like price, time, and other QoS parameters. There are presently
numerous methods that resolve the issue of expense and time slot settlement mecha-
nisms without taking into account the significant characteristics of QoS [Hashem et al.
2015]. Ferretti et al. [2010] proposed a QoS-aware cloud architecture that aims to sat-
isfy QoS requirements of the application. The principal function of this architecture
was the efficient resource management of the virtual execution environment associated
with the application [Zhou and Jiang 2014]. This architecture includes features that
eliminate resource over provisioning by changing and configuring the amount of re-
sources dynamically. But it does not describe the behavior of an application [Garg et al.
2011].

Nathuji et al. [2010] presented “Q-Cloud,” a QoS-aware control framework that man-
ages resource allocation in order to alleviate the consolidated workload interference
problem. The principal aim of this framework was resource allocation at runtime of
cohosting applications based on QoS requirements. The Q-States (QoS states) notion
was proposed in order to assign additional QoS levels to the application. The goal
of these states was to offer additional flexibility to users in order to easily improve
their application-specific QoS level. This is why the QoS monitoring feature presented
according to the “as a service” paradigm is interesting. This facility ensured contin-
uous control of QoS attributes in order to avoid SLA violations [Singh et al. 2010].
Van et al. [2010] attempted to manage autonomic virtual resources for hosting cloud
services. In this approach, a two-level architecture was proposed to separate applica-
tions’ QoS specifications from the allocation and provision of resources. To analyze the
QoS requirements of the hosted service, an application-oriented local decision model
was presented for every application. This module determines a high-level performance
goal in order to make the best decision in the allocation and provision phases. While
the cited solutions aim to satisfy QoS requirements of applications, the management
is still resource based by adapting resource reservations to QoS requirements [Zissis
et al. 2012].

ACM Computing Surveys, Vol. 48, No. 3, Article 42, Publication date: December 2015.

QoS-Aware Autonomic Resource Management in Cloud Computing: A Systematic Review 42:11

Fig. 5. Process of SLA negotiation.

3.5. SLA and QoS: Intertwined in the Autonomic Cloud

The cloud services offered to users consist of a set of components, which may be offered
by different providers [Chana and Singh 2014]. To satisfy the requests of customers,
the service must be provided in accordance with the required level of QoS, and QoS
management must be considered to provide the End-to-End (E2E) QoS level. In current
solutions, a degradation of a component can produce degradation of the global service
[Weng and Bauer 2010]. Thus, one of the major issues in the current solutions of the
cloud is to deliver the required services according to the QoS level expected by the user
[Toosi et al. 2014]. The interaction of the cloud user and cloud provider to negotiate
SLA is shown in Figure 5.

As more and more users give their applications to cloud providers, SLAs between
clients and providers appear key [Kritikos et al. 2013]. To impose SLAs, endless su-
pervision on QoS parameters is required because of the cloud’s dynamic nature. In the
current scenario of the cloud, it is a challenge to ensure QoS for cloud services. QoS
is increasingly significant when composing services, because a debasing QoS in one of
the services can deleteriously disturb the QoS of the complete composition [Assuncao
et al. 2015; Ranjan et al. 2015]. To fulfill the QoS requirements of a cloud service,
the required amount of resources is provisioned by the service provider [Martin et al.
2011]. Present technology of the cloud is not able to fulfill the SLA completely; how-
ever, research groups (industrial and academic) are doing research on QoS assurance
problems in the cloud environment [Bonvin et al. 2011; Rodero et al. 2012].

Cloud users expect the system to guarantee the required QoS services regardless
of any unexpected events. Consumer needs vary unpredictably depending on their
types (developer, service provider, end-user) and their strategies (QoS requirement, cost
effective, optimization, etc.). These unstable demands can result in SLA violations due
to QoS degradation of the cloud services [Buyya et al. 2011]. While cloud providers can
ensure the elasticity, high availability, and reliability of services, the QoS expectations
of users are not yet achieved. Moreover, QoS is a very important aspect that must be
considered in the different phases of the life cycle of cloud solutions. Thus, the QoS
aspects should be considered from the design phase of cloud components in order to
achieve the expected QoS requirements [Breskovic et al. 2011; Beach et al. 2015].

Complementarily, a self-management approach must be introduced to guarantee
the E2E behavior of the global service. Self-management implies the ability of each
service component to manage its behavior itself [Toosi et al. 2014]. Several independent
applications are hosted on the cloud platform using a shared pool of resources to
execute applications based on their QoS requirements [Faruk and Sivakumar 2014].

ACM Computing Surveys, Vol. 48, No. 3, Article 42, Publication date: December 2015.

42:12 S. Singh and I. Chana

Table II. Comparison of QoS-Based Cloud and QoS-Based Grid

Criteria QoS-Based Cloud QoS-Based Grid Findings
Service

management
On-demand installation

(installed only if required)
Preinstalled services

(ready to use)
QoS-based cloud service
uses less storage space.

QoS
management

Critical applications
(urgent workloads)

Noncritical applications QoS-based cloud service is
able to execute urgent
applications with short
deadline.

SLA fulfillment
approaches

Self-adaptation
mechanisms

Request/response models QoS-based cloud service
uses autonomic systems to
deliver service in an
effective manner.

Table III. Research Issues in QoS-Based Grid Computing

Research Issues Reasons
Variation of resource

availability
Due to hardware or software failure, there is dynamic system configuration
and resource contention.

Parallel processing

Due to unavailability of required resources at a particular point of time, some
subtasks are stuck in deadlock condition and continue to struggle for
resources, which further leads to customer dissatisfaction (increasing
execution time and cost).

Decentralized control Global scheduler does not have control over local workloads.

To provide more flexibility along with VM consolidation, server virtualization is used
for such platforms, and VM is migrated based on the required size of the virtual
machine. Automating the process of management of virtual machines and considering
the QoS requirements of hosted applications are key challenges [Tchana et al. 2013;
Rodero et al. 2010]. Autonomic systems (similar to biological systems) need assistance
from humans; they learn to maintain the stability of the system by taking appropriate
steps and adopt to the changing environmental conditions (software failures, hardware
failures, external conditions, etc.) automatically [Mosallanejad et al. 2014]. Generally,
QoS is considered an important element of autonomic systems, and Figure 2 shows
the main properties of an autonomic system (Monitor, Analyze, Plan, and Execute) in a
control loop [Singh and Chana 2013a; Fargo et al. 2013].

3.6. QoS-Based Grid and Cloud

Computing-resource-based services offered to users consist of a set of components,
which may be offered by different providers. To satisfy the request of customers, ser-
vice must be provided in accordance with the required level of QoS. QoS is the service
guarantee based on the parameters described by consumers, and the SLA is an autho-
rized agreement that exhibits it. One of the major challenges in the current computing
solutions (grid and cloud) is providing the required services according to the QoS level
expected by users [Brandic and Dustdar 2011]. We have found three different criteria:
(1) service management (to create, provide, maintain, and ensure required services),
(2) QoS management (to deliver service by optimizing QoS parameters), and (3) SLA
fulfillment approaches (to provide service without violation of SLA); based on these
criteria, QoS-based grid and QoS-based cloud services can be compared, as shown in
Table II.

The QoS-based grid computing issues of variation of resource availability, parallel
processing, and decentralized control are described in Table III.

Existing research reported that QoS parameters such as execution time, cost, latency,
throughput, and availability need to be optimized in future QoS-based grid systems.

ACM Computing Surveys, Vol. 48, No. 3, Article 42, Publication date: December 2015.

QoS-Aware Autonomic Resource Management in Cloud Computing: A Systematic Review 42:13

Table IV. Research Issues in QoS-Based Cloud Computing

Research Issues Reasons
Increasing resource

cost
Overloading and underloading of resources are due to fluctuation of
workloads.

Increasing workload
execution time

Uncertainty and dispersion of resources cause problems in allocation of
resources, resulting from factors such as heterogeneity, dynamism, and
failures.

Increasing power
consumption

A tremendous amount of energy is consumed by these data centers, which
leads to high operational costs and contributes toward carbon footprints to the
environment.

The main QoS constraints that QoS-based cloud computing faces need to be considered
for efficient utilization of resources and are described in Table IV.

Existing research reported that QoS parameters such as execution time, cost, se-
curity, reliability, resource contention, resource utilization, energy consumption, SLA
violation rate, and availability need to be optimized in future QoS-based cloud systems.

4. REVIEW TECHNIQUE

The methodical survey technique described in this research article has been taken from
Kitchenham and Charters [2007]. The stages of this literature review include creating a
review framework, executing the survey, investigating the results of review, recording
the review results, and exploring research challenges. Table V describes the list of
research questions required to plan the survey in autonomic cloud computing. Table VI
describes the 380 research papers retrieved in a manual search and electronic database
search. Figure 6 describes the review technique used in this methodical analysis.

4.1. Sources of Information

We searched broadly in electronic database sources as recommended by Kitchenham
and Charters [2007]; the following electronic databases were used for searching:

• Springer (www.springerlink.com) • ACM Digital Library (www.acm.org/dl)
• ScienceDirect (www.sciencedirect.com) • Wiley Interscience (www.Interscience.wiley.com)
• Google Scholar (www.scholar.google.co.in) • HPC (www.hpcsage.com)
• IEEE eXplore (www.ieeexplore.ieee.org) • Taylor & Francis Online (www.tandfonline.com)

4.2. Search Criteria

The keyword “autonomic cloud computing” is involved in the abstract of each research
paper in every search. It is a time-consuming and general method for review. The
various search strings used in this review are described in Table VI. This methodical
literature survey included both quantitative and qualitative research articles written
in English from 2009 to 2015.

The basic research in this area was commenced in 2009, but rigorous development
took place after 2010. We included research papers from journals, conferences, sympo-
siums, workshops, and white papers from the industry along with technical reports.
Exclusion criteria used at different stages are described in Figure 6. We applied indi-
vidual searches on some journals of Springer, Wiley, Taylor and Francis, Science Direct,
and so forth to cross check the e-search. Our search retrieved over 380 research arti-
cles, as shown in Figure 6, which were reduced to 298 research articles based on their
titles, 217 research articles based on their abstracts and conclusions, and 171 research
articles based on the full text. Then, these 171 research articles were investigated com-
pletely to find a final collection of 110 research articles through reference investigation
and eliminating common challenges based on the criterion of inclusion and exclusion.

ACM Computing Surveys, Vol. 48, No. 3, Article 42, Publication date: December 2015.

42:14 S. Singh and I. Chana

Table V. Research Questions and Motivation

Review Questions Motivation
1. What is the current status of autonomic cloud

computing?
2. How to clearly recognize the present and prospective

desires of cloud consumers?
3. How to cut down the transfer and data cost and

improve the cost-based transparency?
4. How to minimize the execution time of workloads to

improve resource utilization?
5. How to optimize the resource utilization and minimize

the cost simultaneously?
6. How to reduce the uptime of resources? How to reduce

the execution cost and meet the deadline at same time?
7. What are the criteria for negotiation between

consumer and provider?
8. How to reduce energy consumption and its impact on

environment?
9. What other optimization techniques should be

considered for efficient autonomic resource scheduling?
10. How to schedule the resources automatically to avoid

overloading and underloading of resources?
11. What new rules should be required for effective

autonomic resource scheduling?
12. How to design the autonomic resource scheduling

algorithm to provide dynamic scalability at CPU,
network, and application levels?

13. How to understand the cloud workloads for better
autonomic resource scheduling? How to allocate the
resources to cloud workloads for efficient utilization of
resources?

14. How to identify and classify the various cloud
workloads to design autonomic cloud computing
system?

Various autonomic cloud computing
techniques used in cloud computing are
reported. Various scheduling criteria and
QoS parameters for cloud autonomic
resource scheduling considered so far are
stated according to their level of
importance. The research challenge in
terms of the research question is
discovering the existing research that
assessed and compared the distinct
autonomic cloud computing techniques.
This study compared the different types of
autonomic cloud computing techniques.
For every type and subtype of autonomic
cloud computing technique, various types
of existing research have been presented.
It is hard to detect the actual cost for
autonomic resource scheduling. It will
support in planning enhanced and
extremely accessible approaches. The
main aim of this review is to make an
autonomic cloud computing database for
future research through standardization
and benchmarking of relative
investigation of existing research.

1. How to develop an autonomic resource scheduling
technique for cloud resources based on users’ QoS
requirements?

2. How to design an autonomic architecture that can fulfill
QoS requirements of cloud service?

3. What are the QoS requirements of application and
service the user plans to utilize from the cloud?

4. How to enable SLA by searching the suitable service
based on QoS requirements and schedule the resources
to every type of service?

5. How to understand and fulfill the QoS requirements of
a particular service as described by users?

6. What are the criteria to modify the SLA with respect to
time? What are the penalty and compensation criteria if
the resource provider violates the SLA?

7. How to develop an autonomic resource allocation
mechanism through effective utilization of resources
and maintained SLA?

It provides the knowledge about the
review done in this research article. It is
mandatory to find out the number of
research papers in each type of autonomic
cloud computing technique, which helps
to find the key research areas. A
time-based count describes how
autonomic cloud computing terms like
SLA and QoS have progressed over time.
Autonomic cloud computing has become
the hotspot area in the cloud. The latest
research in cloud is going toward effective
autonomic cloud computing. The research
challenges in terms of research questions
emphasize identifying the present
prominence of research in autonomic
cloud computing. Different research
questions are used to identify the key
research areas for future investigation in
the field of autonomic cloud computing.

1. What simulation tools are used for autonomic cloud
computing and what parameters they are considering?

2. How to validate the autonomic resource scheduling
technique through tools?

It is significant to recognize distinct
autonomic cloud computing simulation
tools.

ACM Computing Surveys, Vol. 48, No. 3, Article 42, Publication date: December 2015.

QoS-Aware Autonomic Resource Management in Cloud Computing: A Systematic Review 42:15

Table VI. Search String

Serial No. Keywords Synonyms Dates Content Type
1 Autonomic

Scheduling
Autonomic Resource Scheduling

Algorithms

2009–2015

Journal,
conference,
workshop,
magazine,

white paper,
and

transactions

2 Autonomic
Provisioning

Autonomic Resource Provisioning
Algorithms

3 Self-Healing Fault tolerance in ACCS
4 Self-Protecting Security and attack detection in

ACCS
5 Self-Optimization Minimization of cost, time, energy,

etc., in ACCS
8 Self-

Configuration
Automatic confirmation of

resources
9 Autonomic QoS Quality-of-Service parameters in

ACCS
10 Autonomic SLA Service-Level Agreement in ACCS
11 SLA and QoS SLA and QoS in ACCS
12 Self-Management Resource management in ACCS

Fig. 6. Review technique used in this systematic review.

ACM Computing Surveys, Vol. 48, No. 3, Article 42, Publication date: December 2015.

42:16 S. Singh and I. Chana

Fig. 7. Self-management in the cloud.

4.3. Quality Assessment

A quality assessment was implemented on the outstanding research articles subse-
quently using the criterion of inclusion and exclusion to find suitable research articles.
Autonomic-cloud-computing-related research articles are included in various distinct
conferences and journals. Every research article was explored for unfairness and exter-
nal and internal validation of results according to CRD guidelines given by Kitchenham
and Charters [2007] to provide high-quality research articles on QoS-aware autonomic
resource management techniques.

4.4. Data Extraction

We faced a lot of problems in extracting suitable data when the methodical litera-
ture survey started. We contacted numerous authors to find the in-depth knowledge
of research if required. The following procedure for data extraction was used in our
review:

• One author extracted data from 110 research articles after in-depth review.
• Review results were cross-checked by other author on random samples.
• During cross-checking, if there were any conflicts, then a compromise meeting was

called to resolve the conflict.

5. EXTRACTION OUTCOMES

The motive of this research work is to find the available research in autonomic cloud
computing and is stated in Table VI in the form of research questions. Most of the re-
search articles on autonomic cloud computing are published in a comprehensive variety
of conference proceedings and journals. Figure 7 shows the percentage of research pa-
pers discussing autonomic cloud computing techniques (self-protecting, self-optimizing,
self-configuring, and self-healing) from 2009 to 2015.

Thirty-five percent of the research articles were published in conferences, 48% in
journals, 5% in workshops, and 12% in symposiums. The greatest percentage of re-
search publications came from journals, followed by conferences. Figure 7 depicts the
most research in the field of self-optimizing (44%), followed by self-configuring (31%),
self-healing (16%), and self-protecting (9%). Figure 8 describes the percentage of re-
search papers that consider different QoS parameters (execution time, scalability, cost,
response time, energy, deadline, throughput, availability, security, and resource uti-
lization) from 2009 to 2015. Figure 8 depicts that cost is used as a QoS parameter in
most research papers (20%), while only 2% of research papers used scalability and 2%
used security as a QoS parameter. Mostly resource utilization (17%), execution time

ACM Computing Surveys, Vol. 48, No. 3, Article 42, Publication date: December 2015.

QoS-Aware Autonomic Resource Management in Cloud Computing: A Systematic Review 42:17

Fig. 8. QoS parameters considered in autonomic cloud computing.

Fig. 9. Time count of self-management in the cloud.

(17%), response time (16%), and energy (15%) were used as QoS parameters in research
papers.

The systematic map in Figure 9 helps in recognizing the important areas of self-
management that were highlighted from 2009 to 2015.

6. PHASES OF AUTONOMIC RESOURCE MANAGEMENT IN CLOUD

Categorization of autonomic cloud computing systems along with their characteristics
is presented in this section. Based on the literature, we have categorized autonomic
resource management of the cloud into six phases: (1) design of application, (2) workload
scheduling, (3) allocation, (4) monitoring, (5) self-management, and (6) QoS parameters,
as shown in Figure 10. Further, we explain the characteristics of every component in
detail.

6.1. Design of Application

Data-intensive or computation-intensive applications are executed in the cloud envi-
ronment, but the system performs better if applications run in parallel. To improve
the performance of autonomic cloud computing systems, there is a need for dynamic
composition of applications based on the configuration of the system and requirements
of users [Singh and Chana 2015b]. As shown in Figure 11, the components used in

ACM Computing Surveys, Vol. 48, No. 3, Article 42, Publication date: December 2015.

42:18 S. Singh and I. Chana

Fig. 10. Phases of autonomic resource management.

Fig. 11. Taxonomy based on design of application.

the design of the application are (1) type of application, (2) domain of application, (3)
application presentation, and (4) I/O data requirements.

6.1.1. Type of Application. Application in the cloud consists of several tasks (set of in-
structions executed on computing resource). Cloud applications have been divided into
two types based on relations among tasks: (1) workflow and (2) workload (homoge-
nous or heterogeneous). Workload is an abstraction of work of that instance or set
of instances going to be performed—for example, running a web service or being a
Hadoop data node is a valid workload. Workflow is a term used to describe the set of
interrelated tasks and their distribution among different available resources for better
resource provisioning. Directed Acyclic Graphs are used to present the workflow in
terms of nodes (tasks) and vertices (relationship among tasks) [Xu et al. 2012].

6.1.2. Domain of Application. Presently, engineers are developing scientific applications
to manage resources and user requests in an efficient manner, but the complexity of ap-
plications is increasing. The cloud is an emerging platform to manage complex scientific
applications. In the scientific domain, the computing system fulfills the requirements
of various applications like business applications, HTC (High-Throughput Computing)
applications, and HPC (High-Performance Computing) applications. Cloud technology
is also being used in the domain of healthcare to support business functions and pro-
vide more effective diagnostic processes. QoS requirements for healthcare applications
are high throughput, availability, scalability, and so forth. In biological applications, it
is very difficult to maintain large datasets because it requires extensive I/O operations
[Moreno-Vozmediano et al. 2013]. To resolve this issue, there is a need for computing
infrastructure that helps to maintain the datasets in an efficient manner. In geo-
science applications, both geospatial and nonspatial data are collected and analyzed
[Solomon et al. 2013]. Due to an increase in the volume of data, there is a need for cloud
technology to process data and produce output within a certain deadline. Specifically,
the GIS (Geographic Information System) is an important component of geoscience

ACM Computing Surveys, Vol. 48, No. 3, Article 42, Publication date: December 2015.

QoS-Aware Autonomic Resource Management in Cloud Computing: A Systematic Review 42:19

Fig. 12. Taxonomy based on workload scheduling.

applications. QoS requirements for GIS applications are security, processing speed,
larger storage space, and so forth. Other applications of cloud computing include Google
Docs, Dropbox, Video Encoding, Multiplayer Online Gaming, Tower Planning, and Data
Analytics.

6.1.3. Application Presentation. In the cloud, basically applications are designed using
data definition languages or application generation tools. XML (eXtensible Markup
Language) is used to create applications in data language. Applications in XML can
be presented in an easy manner, but this requires a proper nested structure, so it is
difficult to remember the syntax. To avoid this, most cloud users use GUI (Graphical
User Interface)-based tools for better visualization (PNs (Petri Nets)) [Amoretti et al.
2013].

6.1.4. I/O Data Requirements. Different types of data, input, intermediate, and output
data, are used to manage the cloud-based application. In geoscience applications, both
geospatial and nonspatial data are collected and analyzed. Due to an increase in the
volume of data, there is a need for cloud technology to process data and produce output
within a certain deadline. Every type of geographically referenced data is collected,
stored, manipulated, and managed. Some applications need data input in sequence
mode, but others need data input in parallel mode [Pandey et al. 2012]. We consider
data as large if an application needs a massive amount of input data and data as small
if applications need a lesser amount of data for execution [Rak et al. 2011].

6.2. Workload Scheduling

Workload scheduling is composed of two functions: resource allocation and resource
mapping. The objective of resource allocation is to assign appropriate resources to the
suitable workloads on time, so that applications can utilize the resources effectively
[Kailasam et al. 2010]. Resource mapping is a process of workloads with appropriate
resources based on the QoS requirements specified by users in terms of SLAs to mini-
mize the cost and execution time and maximize the profit. As shown in Figure 12, the
components of workload scheduling are (1) architecture, (2) objective, (3) decision, and
(4) integration.

6.2.1. Architecture. For performance, autonomy, and scalability of the autonomic sys-
tem, scheduling architecture is an important component [Buyya et al. 2012]. Basically,
there are three types of scheduling architecture in the cloud: hierarchical, centralized,
and decentralized [Mastelic et al. 2014]. In the centralized architecture of scheduling,
the central controller makes all the decisions for all the tasks and subtasks. The sched-
uler processes the user request and maps appropriate resource(s) with the workload
for execution, but scalability is not provided in this architecture to both resources and
workloads. In the hierarchical architecture, there are different levels of schedulers,

ACM Computing Surveys, Vol. 48, No. 3, Article 42, Publication date: December 2015.

42:20 S. Singh and I. Chana

that is, higher- and lower-level schedulers. The higher-level scheduler is a central
controller that controls all the lower-level schedulers and reduces the complexity of
execution by assigning lower-level schedulers to every small task. This type of archi-
tecture schedules resources based on different scheduling techniques, but in the case of
a failure in central control, the whole computing system will fail [Abdul-Rahman et al.
2011]. In case of decentralized architecture of scheduling, resources are assigned to the
workloads based on their individual requirements through the property of scalability.
But this approach is only suitable for homogenous workloads and resources [Gergin
et al. 2014].

6.2.2. Objective. The scheduler performs matchmaking (mapping of workloads to avail-
able resources) after submission of workloads by users and determines its possibility
(whether the task can be provisioned on resources based on QoS requirements or not).
The scheduler sends requests to the resource provider for scheduling. The scheduler
releases extra resources from the resource pool based on the performance required
[Saripalli et al. 2011]. The scheduler also contains information about the resources for
submitting workloads and monitors the desired performance that will cause the sys-
tem to either acquire or release resources (load balancing). To map the user workload
to a corresponding cloud resource is a challenging task based on QoS requirements.
Considering many QoS requirements is a necessary task for efficient resource schedul-
ing in the cloud. The main objective of the scheduler is to schedule the workloads or
tasks on available resources after mapping with minimum cost and time and maximum
resource utilization (optimizing).

6.2.3. Decision. Different scheduling algorithms are used in the cloud to map the tasks
to resources based on the QoS requirements specified by the user. Scheduling in cloud
computing is of two types: static and dynamic. Matchmaking of the user workload to
a particular resource based on user requirements is called static resource scheduling,
and based on provisioning of resources, the mapping and execution of user workloads
can be done, which is called dynamic resource scheduling. Dynamic scheduling maps
the resources at runtime, which provides scalability and improves the performance by
reducing wastage of resources [Mazzucco 2010].

6.2.4. Integration. The Scheduler provides the function of integration of different ex-
ecution units to give the final result of execution [Mehrotra et al. 2014]. The broker
is used to track the status of execution to check whether the number of resources is
sufficient for the task or more are required. Based on the principles of SOA (Service-
Oriented Architecture), different numbers of schedulers are used to execute different
individual tasks. After successful execution of all the tasks, the broker combines the
result of every scheduler to generate the final output of execution. Integration can be
separate or combined.

6.3. Allocation

The process of resource allocation is controlled by a centralized agent called the Cloud
Resource Manager (CRM). The CRM manages all the cloud workloads and resources
and maps the resources and workloads efficiently. There are different entities and inter-
faces associated with the CRM. The scaling listener is used to map the workloads with
appropriate resources based on QoS requirements described by users [Singh and Chana
2015d]. Generally, in resource allocation, cloud consumers submit workloads along
with their QoS requirements to the cloud provider for execution. After submission,
the cloud provider wants to execute workloads with minimum time, while cloud con-
sumers want to execute with minimum execution cost. Based on QoS requirements and
these constraints, the resources are provisioned from a set of resources {r1, r2, r3, . . . , rn}

ACM Computing Surveys, Vol. 48, No. 3, Article 42, Publication date: December 2015.

QoS-Aware Autonomic Resource Management in Cloud Computing: A Systematic Review 42:21

Fig. 13. Taxonomy based on allocation.

for users’ workloads {w1, w2, w3, . . . , wm} with maximum resource utilization and cus-
tomer satisfaction. Resource allocation based on workflow consists of mapping of every
cloud workload to a suitable resource and permitting workloads to fulfill a partic-
ular benchmark or performance standard. Workflow-based resource scheduling de-
termines resources and executes workloads on appropriate resources [Khargharia
et al. 2008]. Efficient scheduling of workflow can improve the performance by
allocation of appropriate resources. To maximize the revenue and improve user sat-
isfaction, an effective allocation of resources is desired in the cloud environment. As
shown in Figure 13, components of resource allocation are (1) decision criteria, (2)
coordination mechanism, and (3) Intercommunication Protocol.

6.3.1. Decision Criteria. Decisions are made in computing systems through the inter-
action of autonomic components for scheduling and mapping allocation of resources
[Nallur et al. 2009]. There are two types of decisions in autonomic cloud computing: mu-
tual and independent. In the independent decisions scheme, every scheduler schedules
the resources and executes them independently after submission of tasks in an auto-
nomic computing system without taking care of the resource utilization status. In the
mutual decisions scheme, all the tasks are executed based on the mutual coordination
among different types of schedulers (low-level scheduler and high-level scheduler). This
type of decision-making scheme reduces resource contention [Caton and Rana 2012].

6.3.2. Coordination Mechanism. For successful execution of resources, there is a need for
robust coordination among distributed and dynamic entities. In the cloud, there are
two types of coordination: group based and market based. In group-based coordination,
groups are formed based on the similar requirements of different cloud users and
resources are shared among those groups. Cloud providers also provide resources at
the group level to fulfill user requirements, and the group-based approach provides
better performance and customer satisfaction along with fault tolerance. SLA is used to
make a written agreement between different groups. In the market-based mechanism,
the concept of negotiation is used to provide resources to different cloud users through
negotiated SLAs [Maggio et al. 2012]. Interested economic entities interact with each
other through a virtual environment for selling and buying computing resources [Caton
et al. 2013; Wu et al. 2013].

6.3.3. Intercommunication Protocol. In the cloud, two types of protocol are used for co-
ordination among autonomic components: one to many and one to one. In one to one,
one consumer is interacting with one provider based on a negotiated SLA, but in one
to many, one cloud provider provides service to more than one cloud user and this
consumes large network bandwidth [Casalicchio and Silvestri 2013].

ACM Computing Surveys, Vol. 48, No. 3, Article 42, Publication date: December 2015.

42:22 S. Singh and I. Chana

Fig. 14. Taxonomy based on monitoring.

6.4. Monitoring

Performance optimization can be best achieved by efficiently monitoring the utilization
of computing resources. So, we need a comprehensive intelligent monitoring agent to
analyze the performances of computing resources. A monitoring system is used to
depict resource and memory utilization. Monitoring collects information about the
cloud environment (load on processor, resource utilization, task execution, and status
of active resources) [Sanaei et al. 2014]. Sensor-gathered information and required
changes will be implemented through effectors after analysis. As shown in Figure 14,
monitoring in the cloud consists of four levels: (1) execution, (2) status, (3) service, and
(4) resource usage.

6.4.1. Execution. To avoid unexpected failures, the scheduler monitors the status of
execution (started, queued, completed, resumed, failed) after submission of the task
or workload in the cloud system [Jamshidi et al. 2014]. In the cloud, execution moni-
toring is of two types: passive and active. In active monitoring, the monitoring agent
continually checks the execution of current workloads or tasks and modifies the ex-
ecution procedure based on information coming from other schedulers [Paton et al.
2009]. Schedulers in this type of monitoring will send a beat automatically after a fixed
time to the client about the status of execution and also inform when resources are
free for other execution after successful completion of the current execution. In passive
monitoring of execution, the local monitoring agent is used to monitor the status of
execution to check whether the workload or application is executing according to QoS
requirements specified by users in SLAs [Anithakumari and Sekaran 2014].

6.4.2. Status. An Autonomic Element (AE) is used to monitor the performance of
the system to check the resource utilization, memory utilization, and network usage
through the use of monitoring tools. AEs also monitor the parameters (SLA deviation,
resource uptime) specified to check the performance of the system in order to avoid SLA
violations. In case of SLA violations, the AE takes the required steps for the prevention
of SLA violations [Singh and Chana 2012].

6.4.3. Service. Service monitoring collects the information about free resources and
their status of resource utilization and processor load [Singh and Chana 2015a]. A
service monitoring agent is used to monitor the status of execution to check whether
the workload or application is executing according to QoS requirements specified by
users in SLAs. Cloud providers’ SLAs will give an indication of how much actual SLA
deviation of service the provider views as feasible, and to what amount it is agreeable
to require its own financial resources to compensate for unexpected outages. In the
cloud, there are two types of service: centralized and decentralized [Mayer et al. 2015].
A centralized repository is used to store the monitored data in centralized service, but

ACM Computing Surveys, Vol. 48, No. 3, Article 42, Publication date: December 2015.

QoS-Aware Autonomic Resource Management in Cloud Computing: A Systematic Review 42:23

Fig. 15. Taxonomy based on self-management.

this type of service is not scaling with an increase in the number of resource providers
and users. But in the case of decentralized service, load is balanced and fault tolerance
is provided efficiently [Etchevers et al. 2011].

6.4.4. Resource Usage. The resource monitoring system collects the resource usage by
measuring through-performance metrics such as resource and memory utilization to
avoid underloading and overloading of resources. The cloud provider needs to retain an
adequate number of resources to deliver continuous service to cloud consumers during
peak load [Gill 2015]. Monitoring of resource usage is used to take care of important
QoS requirements like security, availability, performance, and so forth during workload
execution. There are two main aspects of monitoring of resource usage: (1) consumers
want to execute their workload at minimum cost and minimum time without violation
of SLAs, and (2) providers want to execute the workload with a minimum number of
resources. For this, monitoring of resource usage is a vital part of resource management
to measure the SLA deviation, QoS requirements, and resource usage. Monitoring of
resource usage can be referred to as monitoring the performances of both physical and
virtual infrastructure [Makris et al. 2013].

6.5. Self-Management

Self-management in cloud computing has four properties: (1) self-healing, (2) self-
configuring, (3) self-protecting, and (4) self-optimization, as shown in Figure 15. To
implement all the properties of self-management together is a difficult task, and based
on the requirements and goals of an autonomic system, some of the properties can be
considered.

6.5.1. Self-Healing. In cloud computing, self-healing is the capability of a system to
identify, analyze, and recover from unfortunate faults automatically. This property of
self-management improves performance through fault tolerance by reducing or avoid-
ing the impact of failures on execution [Didona et al. 2014]. Failures can occur in the
cloud for the following reasons: (1) unexpected changes in the configuration of the
execution environment, (2) unavailability of resources, (3) overloading of resources,
(4) shortage of memory, and (5) network failures. Autonomic systems use techniques
(check-pointing, failure forecasting, and replication) to handle these failures. The check-
pointing technique is used to transfer the failed workload or tasks to the other available
resources to start the execution from the point of failure. The failure forecasting tech-
nique can be used to predict the requirement of resources in the future in order to avoid
failure of execution. In the replication technique, workload is executed on more than
one resource to increase the chances of successful execution [Maurer et al. 2012].

6.5.2. Self-Configuring. In cloud computing, self-configuring is the capability of a sys-
tem to adapt to changes in the environment [Niehörster and Brinkmann 2011].

ACM Computing Surveys, Vol. 48, No. 3, Article 42, Publication date: December 2015.

42:24 S. Singh and I. Chana

Fig. 16. Taxonomy based on QoS parameters.

Self-configuring in autonomic systems consists of the installation of missed or outdated
components based on an alert generated by the system without human intervention.
Some components may be reinstalled in changing conditions [Etchevers et al. 2011].

6.5.3. Self-optimizing. In cloud computing, self-optimizing is the capability of a system
to improve the performance. Dynamic scheduling techniques are using in the cloud to
map the tasks or workloads on appropriate resources [Beloglazov et al. 2012]. Dynamic
scheduling continually checks the status of execution and improves the system per-
formance based on the feedback given by the autonomic element. For data-intensive
applications, adaptive scheduling is used, which can be easily adapted in changed
environments [Grozev and Buyya 2014; Xiao and Boutaba 2005].

6.5.4. Self-protecting. In cloud computing, self-protecting is the capability of a system
to protect against intrusions and threats. To maintain the security and integrity of a
system, it is required to detect and protect the autonomic system from malicious attack
[Mencagli et al. 2014]. To achieve this property of self-management, secure scheduling
policies should be provided on both sides (provider side and user side). Security policies
should be required in which the system should be shut down before a strong attack
happens [Qu et al. 2010]. In the trust management system approach, malicious attack-
ers can be detected through behavioral auditing. In the intrusion detection technique,
attacks are continually monitored and analyzed by the system to avoid future attacks
[Vieira et al. 2014; Maximilien and Singh 2004].

6.6. QoS Parameters

Cloud-based systems consider different QoS parameters to design a successful system
[Casalicchio et al. 2013]. From the literature, we identified eight types of QoS parame-
ters (scalability, availability, reliability, security, cost, time, energy, SLA violation and
resource utilization) used in autonomic cloud computing [Simonin et al. 2013; Chihi
et al. 2013; Pietro et al. 2013; Addis et al. 2010; Ayadi et al. 2013] systems, as shown
in Figure 16.

Scalability is the capability of a computing system to maintain the performance while
increasing the number of users or resource usage in order to fulfill the requirements
of users. The system should be able to produce the correct results when the load is
increased. Availability is the ability of a system to ensure the data is available with
the desired level of performance in normal as well as in fatal situations excluding
scheduled downtime. Reliability is the capability of a system to perform consistently
according to its predefined objectives. Security is the ability to protect the data stored
on the cloud by using data encryption and passwords. Energy is the amount of energy
consumed by a resource to finish the execution of the workload. Execution time is the
time required to execute the workload completely. Cost is the amount of cost that can be
spent in one hour for the execution of workload. Resource utilization is a ratio of actual
time spent by the resource to execute the workload to the total uptime of the resource
for a single resource. SLA violation is the possibility of defilement of the Service-Level
Agreement.

ACM Computing Surveys, Vol. 48, No. 3, Article 42, Publication date: December 2015.

QoS-Aware Autonomic Resource Management in Cloud Computing: A Systematic Review 42:25

Table VII. Summary of QoS-Aware Autonomic Resource Management Techniques

Technique Description Author Organization
CBR Case-Based Reasoning Maurer et al.

[2013]
University of Manchester, UK

ASP Application Service
Provider

Cardellini
et al. [2011]

University of Roma, Italy

COCCUS self-COngured,
Cost-based Cloud qUery

Services

Konstantinou
et al. [2013]

University in Athens, Greece

CAS Cloud Auto Scaling Mao et al.
[2010]

University of Virginia, USA

AWM Autonomic Workload
Manager

Sah et al.
[2014]

Pokhra University, Nepal

AMF Autonomic Management
Framework

Khargharia
et al. [2008]

University of Arizona, USA

SH-SLA Self-Healing SLA Mosallanejad
et al. [2014]

Universiti Putra Malaysia, Malaysia

ARAS-M Autonomic Resource
Allocation Strategy based

on Market Mechanism

You et al.
[2011]

Hangzhou Dianzi University, China

BN-DSS Bayesian Network-based
Decision Support System

Bashar [2013] Prince Mohammad Bin Fahd
University, Saudi Arabia

SNOOZE Self-Organizing and
Healing

Feller et al.
[2012]

INRIA Rennes - Bretagne
Atlantique, France

DeSVi Detecting SLA Violation
infrastructure

Emeakaroha
et al. [2012]

Vienna University of Technology,
Vienna, Austria

AFTRC Adaptive Fault Tolerance
in Real-time Cloud

Malik et al.
[2011]

INRIA - Sophia Antipolis, France

CoTuner Coordinated
Self-Configuration of

Virtual Machines

Bu et al. [2013] Wayne State University, USA

AROMA Automated Resource
allocation and

cOnfiguration of
MApReduce

Lama and
Zhou [2012]

University of Colorado, USA

HTC High-Throughput Cluster
computing system

Kijsipongse
and Vannarat

[2010]

National Electronics and Computer
Technology Center, Bangkok,
Thailand

SHAPE Self-Healing And
self-Protection
Environment

Singh and
Singh [2014]

Thapar University, India

7. QoS-AWARE AUTONOMIC RESOURCE MANAGEMENT TECHNIQUES IN THE CLOUD

In this section, a survey on selected QoS-aware autonomic resource management tech-
niques is conducted and taxonomy (as discussed in the previous section in Figure 10)
is mapped to the key characteristics of autonomic resource management techniques
to find the gaps in existing research. A summary of selected QoS-aware autonomic re-
source management techniques is presented in Table VII. A comparison of techniques
and their classification based on taxonomy is described in Tables VIII through XIII.

The Case-Based Reasoning (CBR) technique [Maurer et al. 2013] uses human-based
interaction to make an agreement between users and providers called an SLA for
successful execution of workloads by considering resource utilization and scalability
as QoS requirements. In this system, various elastic levels are defined, and a control
loop is used to enable autonomic computing in the virtual environment. A knowledge
base is used to store the rules used in decision making after monitoring of data (real
and synthetic workloads) for resource configuration. This system executes in four steps:

ACM Computing Surveys, Vol. 48, No. 3, Article 42, Publication date: December 2015.

42:26 S. Singh and I. Chana

Table VIII. Taxonomy Based on Design of Application

Technique
Type of

Application
Domain of
Application

Application
Presentation I/O Requirement

CBR Workload Scientific Language
Based

Large

ASP Workflow Business Tool Based Small
COCCUS Workload Scientific Language

Based
Small

CAS Workload Scientific Tool Based Small
AWM Workload Business Tool Based Small
AMF Workload Business Language

Based
Large

SH-SLA Workflow Scientific Language
Based

Small

ARAS-M Workload Scientific Tool Based Large
BN-DSS Workload Business Tool Based Small
SNOOZE Workload Scientific Tool Based Small

DeSVi Workflow Scientific/
Business

Language
Based

Large

AFTRC Workflow Scientific Language
Based

Small

CoTuner Workload Scientific/
Business

Tool Based Large

AROMA Workflow Scientific Tool Based Small
HTC Workload Business Language

Based
Small

SHAPE Workload Scientific Tool Based Large

Table IX. Taxonomy Based on Workload Scheduling

Technique Architecture Objective Decision Integration
CBR Hierarchical Optimizing Dynamic Combine
ASP Centralized Optimizing Static Separate

COCCUS Centralized Load Balancing Static Separate
CAS Decentralized Optimizing/Load Balancing Dynamic Combine
AWM Centralized Load Balancing Dynamic Combine
AMF Hierarchical Optimizing Static Combine

SH-SLA Hierarchical Load Balancing Dynamic/Static Separate
ARAS-M Centralized Optimizing Static Separate
BN-DSS Decentralized Optimizing Dynamic Combine
SNOOZE Hierarchical Optimizing/Load Balancing Dynamic Combine

DeSVi Decentralized Optimizing/Load Balancing Static Separate
AFTRC Centralized Load Balancing Static Combine
CoTuner Centralized Optimizing Dynamic/Static Combine
AROMA Decentralized Load Balancing Dynamic Separate

HTC Centralized Optimizing Dynamic Combine
SHAPE Centralized Optimizing Dynamic Combine

(1) retrieve the most similar case, (2) solve the problem through a similar case, (3) revise
the solution, and (4) store the key features of the solution in knowledge database for
future use. SLA violations and resource utilization are improved in this autonomic
system. Application Service Provider (ASP) [Cardellini et al. 2011] uses WSDL (Web
Service Description Language) and Web Interface (HTTP) to design proactive and
reactive heuristic policies to get an optimal solution. All the important QoS parameters
are mentioned in the SLA document. In this autonomic system, performance history

ACM Computing Surveys, Vol. 48, No. 3, Article 42, Publication date: December 2015.

QoS-Aware Autonomic Resource Management in Cloud Computing: A Systematic Review 42:27

Table X. Taxonomy Based on Allocation

Technique Agreement Allocation Mechanism Intercommunication Protocol
CBR Independent Group Based One to One/One to Many
ASP Independent Group Based One to One

COCCUS Independent Group Based One to Many
CAS Mutual Market Based One to Many
AWM Independent Market Based One to One
AMF Mutual Market Based One to One/One to Many

SH-SLA Mutual Group Based One to One
ARAS-M Independent Market Based One to Many
BN-DSS Independent Group Based One to One
SNOOZE Independent Group Based One to One/One to Many

DeSVi Mutual Group Based One to Many
AFTRC Mutual Group Based One to One
CoTuner Independent Group Based One to Many
AROMA Mutual Group Based One to One

HTC Independent Market Based One to One
SHAPE Independent Group Based One to Many

Table XI. Taxonomy Based on Monitoring

Technique Execution Status Service Resource Usage
CBR Active System Performance/

Performance Parameters
Centralized Underloading/

Overloading
ASP Passive System Performance Centralized Underloading
COCCUS Passive System Performance/

Performance Parameters
Centralized Underloading

CAS Active System Performance Decentralized Underloading/
Overloading

AWM Passive System Performance/
Performance Parameters

Centralized Overloading

AMF Passive System Performance Decentralized Overloading
SH-SLA Active System Performance Centralized Underloading/

Overloading
ARAS-M Passive Performance Parameters Centralized Underloading
BN-DSS Active System Performance/

Performance Parameters
Decentralized Underloading

SNOOZE Passive Performance Parameters Centralized Underloading/
Overloading

DeSVi Passive Performance Parameters Decentralized Overloading
AFTRC Active Performance Parameters Centralized Overloading
CoTuner Active System Performance/

Performance Parameters
Centralized Overloading

AROMA Active Performance Parameters Decentralized Underloading
HTC Passive System Performance Centralized Underloading
SHAPE Active Performance Parameters Centralized Underloading/

Overloading

is used to resolve the alerts generated at runtime due to some QoS parameters. ASP
provides the feature of load balancing and VM allocation at runtime through the use
of a fully controlled autonomic loop. In this system, lease cost and SLA violations are
reduced.

The Self-COngured, Cost-based Cloud qUery Services (COCCUS) technique
[Konstantinou et al. 2013] uses a centralized architecture to provide the query-based
facility in which users can ask queries regarding scheduling policies, priorities, and

ACM Computing Surveys, Vol. 48, No. 3, Article 42, Publication date: December 2015.

42:28 S. Singh and I. Chana

Table XII. Taxonomy Based on Self-Management

Technique Self-Healing Self-Configuration Self-Optimization Self-Protecting
CBR Fault Prediction Auto-configuration/

Reinstallation
Adaptive

Scheduling
Scheduling Policy

ASP NA Auto-configuration Adaptive
Scheduling

NA

COCCUS Check-Pointing Auto-configuration/
Reinstallation

Dynamic
Scheduling

NA

CAS NA Auto-configuration Dynamic
Scheduling

Trust Management

AWM Fault Prediction Auto-configuration Adaptive
Scheduling

Scheduling Policy

AMF NA Auto-configuration/
Reinstallation

Adaptive
Scheduling/

Dynamic
Scheduling

NA

SH-SLA Fault Prediction NA Dynamic
Scheduling

NA

ARAS-M NA NA Adaptive
Scheduling/

Dynamic
Scheduling

NA

BN-DSS Fault Prediction Auto-configuration Adaptive
Scheduling

NA

SNOOZE Fault Prediction/
Check-Pointing

Auto-configuration/
Reinstallation

Dynamic
Scheduling

Trust Management

DeSVi NA Auto-configuration/
Reinstallation

Adaptive
Scheduling

NA

AFTRC Fault Prediction/
Check-Pointing

NA Dynamic
Scheduling

NA

CoTuner NA Auto-configuration Dynamic
Scheduling

NA

AROMA NA Auto-configuration Adaptive
Scheduling

Scheduling Policy

HTC Fault Prediction Auto-configuration/
Reinstallation

Adaptive
Scheduling/

Dynamic
Scheduling

Scheduling Policy

SHAPE Fault Prediction NA Dynamic
Scheduling

Intrusion Detection

budget information. Cloud DBMS is used to store the information about the schedul-
ing policies and user queries for further use. The main objectives of COCCUS are to
(1) get and execute the user queries, (2) store the queries in the data structure, and
(3) minimize the maintenance cost of query execution. The Cloud Auto Scaling (CAS)
technique [Mao et al. 2010] schedules activities of VM instance startup and shutdown
automatically to improve the performance. CAS enables users to finish the execution
of workloads or tasks within their deadline with minimum cost. The Windows Azure
Platform is used to implement this autonomic system. CAS contains four components:
history repository, performance monitor, VM manager, and auto-scaling decider. The
performance monitor checks the processing time, execution time, and arrival time
of the workload. The history repository is used to store particular information about
the workload. The VM manager maintains a relation between cloud providers and
the auto-scaling mechanism and executes a plan of the auto-scaling decider to finish
the execution of workloads [Singh and Chana 2013c]. The Autonomic Workload Man-
ager (AWM) technique [Sah et al. 2014] uses DPSMS (Distributed Provisioning and

ACM Computing Surveys, Vol. 48, No. 3, Article 42, Publication date: December 2015.

QoS-Aware Autonomic Resource Management in Cloud Computing: A Systematic Review 42:29

Table XIII. Taxonomy Based on QoS Parameters

Resource SLA
Technique Scalability Availability Reliability Security Cost Time Energy Utilization Violation

CBR
√ √ √ √ √ √

ASP
√ √

COCCUS
√ √

CAS
√ √ √ √

AWM
√ √ √ √

AMF
√ √

SH-SLA
√ √ √ √

ARAS-M
√

BN-DSS
√ √

SNOOZE
√ √ √ √ √

DeSVi
√ √ √

AFTRC
√ √

CoTuner
√

AROMA
√ √ √ √

HTC
√ √

SHAPE
√ √ √ √ √ √

Scaling Decision Making System) to distribute the workloads on resources based on
their common QoS characteristics. AWM divides resources into two categories: coarse-
grained and fine-grained resources. AVM allocates the resources based on minimum
response time and high throughput. This autonomic system executes in three steps:
(1) allocate resources to workloads, (2) minimize execution time, and (3) check execution
status (if it executes within time and budget, then it continues execution; otherwise,
provide more resources). The Autonomic Management Framework (AMF) [Khargharia
et al. 2008] uses an autonomic mechanism of performance and power management
theoretically. This system consists of three modules: managed system, component in-
terface, and autonomic manager. In the managed system module, AMF continually
monitors, analyzes, and executes the adequate actions to maintain the appropriate
level of performance. This component interface defines procedures to measure perfor-
mance at runtime and includes the operation port, control port, function port, and
configuration port. The autonomic manager executes all the workloads on adequate
resources with minimum execution time and cost.

The Self-Healing SLA (SH-SLA) technique [Mosallanejad et al. 2014] is an auto-
nomic system designed to enable hierarchical self-healing that monitors the SLA SLA
violations and takes necessary steps to prevent SLA violations. SLAs with similar
agreements will interact with each other to notify the status of execution [Singh and
Chana 2013c]. SLA-SH consists of four steps: (1) specify SLA, (2) negotiate based on
SLA, (3) monitor the SLA, and 4) react according to SLA deviation. The Autonomic Re-
source Allocation Strategy based on Market Mechanism (ARAS-M) technique [You et al.
2011] uses a market-based mechanism to allocate the resources to workloads based on
QoS requirements specified by users. In this autonomic system, the Genetic Algorithm
(GA) is used to attain an equilibrium state by adjusting the price automatically. This
system fulfills the demand of every workload along with QoS requirements.

The Bayesian Network-based Decision Support System (BN-DSS) [Bashar 2013] pro-
vides autonomic scaling of utility computing resources. The BN-DSS system studies
the historical behavior of the autonomic system and predicts the performance, applica-
bility, and feasibility based on this historical data and negotiates the SLA [Leite et al.
2014]. Structural learning is used to study the behavior of the system.

ACM Computing Surveys, Vol. 48, No. 3, Article 42, Publication date: December 2015.

42:30 S. Singh and I. Chana

The Self-Organizing and Healing (SNOOZE) technique [Feller et al. 2012] uses hi-
erarchical architecture to allocate the resources for the workloads in the virtual envi-
ronment. SNOOZE works in three layers: physical layer, hierarchical layer, and client
layer. The local controller is used to control the nodes and machines are structured
in clusters in the physical layer, group leaders and group managers are used in the
hierarchical layer for clustering of fault-tolerant components, and the user interface is
provided through the client layer. The design of SNOOZE is very simple and scalability
is achieved.

The Detecting SLA Violation infrastructure (DeSVi) technique [Emeakaroha et al.
2012] uses a resource monitoring mechanism to prevent the violation of SLAs. DeSVi
allocates the resources of the workloads in the virtual environment, and resources are
monitored by mapping user-defined SLAs with low-level resource metrics. Service-level
objectives have been defined to detect the violation in SLAs and resource utilization.
DeSVi executes transactional web applications and image rendering applications that
contain heterogeneous workloads and monitors consumption of resources. The Adap-
tive Fault Tolerance in Real time Cloud (AFRTC) [Malik et al. 2011] system is used
to detect the faults, provide fault tolerance, and calculate the reliability of nodes to
make decisions. Reliability of nodes in the virtual environment is changing adaptively
[Singh and Chana 2013b]. A node is reliable if a virtual node produces results within
a specified deadline; otherwise, the node is not reliable. The node will be removed
if it fails continually and a new node will be added. AFRTC uses backward recov-
ery if any node does not achieve the required level of reliability [Carpen-Amarie 2011].
The Coordinated Self-Configuration of Virtual Machines (CoTuner) technique [Bu et al.
2013] uses a model-free hybrid reinforcement learning technique to enable coordination
among applications and virtual resources. CoTuner works based on knowledge-guided
exploration policies to design a methodology for autonomic configuration of resources
in case of fluctuation of workloads. Coordinated auto-configuration is achieved by using
a simplex-based space reduction technique.

The Automated Resource allocation and cOnfiguration of MApReduce (AROMA) tech-
nique [Lama and Zhou 2012] allocates resources to workloads based on QoS require-
ments specified by cloud users. AROMA enables configuration of jobs of Hadoop auto-
matically to compare the value of resource utilization with already executed workloads.
Machine-learning techniques are used to make the provisioning decisions to reduce
execution time. The High-Throughput Cluster (HTC) computing system [Kijsipongse
and Vannarat 2010] is an extension of rocks clusters to extend the local cluster to re-
mote resources of the cloud transparently and securely. HTC works based on dynamic
provisioning mechanisms, that is, the job scheduling policy in which the database is
updated regularly when a new node is added or removed. Updated information will be
distributed to all other nodes for the purpose of synchronization. The Self-Healing And
self-Protection Environment (SHAPE) technique [Singh and Singh 2014] is an auto-
nomic system to recover from various faults (hardware, software, and network faults)
and protect from security attacks (DDoS, R2L, U2L, and probing attacks). SHAPE is
based on component-based architecture, in which new components can be added or re-
moved easily. Open-source technologies are used to implement this autonomic system.
A comparison of QoS-aware autonomic resource management techniques is presented
in Table XIV.

8. QOS-AWARE AUTONOMIC RESOURCE MANAGEMENT IN THE CLOUD:
A PERSPECTIVE MODEL

The ability to improve allocation of resources and utilization of resources to fulfill the
QoS requirements of cloud users is called self-management. Important aspects like
workload management and resource utilization are mandatory to consider for such a

ACM Computing Surveys, Vol. 48, No. 3, Article 42, Publication date: December 2015.

QoS-Aware Autonomic Resource Management in Cloud Computing: A Systematic Review 42:31

Table XIV. Comparison of QoS-Aware Autonomic Resource Management Techniques

Technique Objective Function Merits Demerits
CBR Reduce execution time and

cost
CPU time and SLA

violations are reduced
Unable to handle large

problems
ASP Improves negotiation time

for SLAs
Reduce SLA violations and

lease cost
Decision delay

COCCUS Reduce maintenance cost Cost reduced Unable to handle multiple
workflows and problem of

starvation
CAS Optimize resource utilization

and cost
Average CPU time and cost

reduced
Not suitable for

network-intensive
applications

AWM Reduce monetary cost Makespan reduced Does not considered penalty
cost and compensation

AMF Reduce job’s execution time Execution time and network
traffic reduced

Lack of stabilized API

SH-SLA Reduce SLA deviation SLA violations reduced Does not consider
heterogeneous workloads

ARAS-M Reduce energy consumption Resource uptime reduced Failure prediction not
measured accurately

BN-DSS Improves resource
utilization

Resource contention reduced Starvation

SNOOZE Improves computational
capacity

Time, scalability, and cost
improved

Only single provider
considered

DeSVi Reduce resource
consumption

Resource contention reduced SLA violations, does not
consider penalty cost and

compensation
AFTRC Improve resource utilization Energy consumption reduced Avg. decision time larger
CoTuner Reduce power consumption No. of deadlines missed,

execution time, and cost
reduced

For workloads, sensitivity of
weight calculation not

considered
AROMA Improve resource utilization

and execution time
Execution time reduced SLA violation

HTC Reduce power consumption Energy consumption and
execution time reduced

Cost is larger

SHAPE Improve security, execution,
time and cost

Time and cost reduced and
availability, reliability, and

security improved

Self-optimization and
self-configuration not

considered

characteristic. The utility function is mostly used for self-management of resources
[Melendez et al. 2013; You et al. 2013; Xu et al. 2014]. Automatic management of the
performance of a system is a complex issue due to unpredictability of resources. The
main research issues in this context are as follows [Singh and Chana 2015c, 2015d]:

a) No service provider provides all the cloud services required to implement autonomic
service management.

b) Except AWS (Amazon Web Services), no service provider provides integrated auto-
nomic services, but AWS provides service with a low degree of customization.

IaaS (Infrastructure as a Service)-based AWS (Amazon Web Service) currently de-
livers cloud-based integrated autonomic services to cloud users [Amazon Web Services
2013; Jackson et al. 2010; Madduri et al. 2013; Iqbal et al. 2014]. Users interact with
the Amazon cloud through the Internet from any geographical location, as shown in
Figure 17. On the provider side, Amazon uses Web Server, Elastic Compute Cloud
(EC2) Instance Web Server, Amazon Simple Queue Service (SQS), Simple Database,

ACM Computing Surveys, Vol. 48, No. 3, Article 42, Publication date: December 2015.

42:32 S. Singh and I. Chana

Fig. 17. Cloud-based integrated autonomic AWS.

Fig. 18. Use case of autonomic AWS.

and Amazon S3 (Simple Storage Service) to provide service in a managed and effective
manner to cloud users.

AWS provides integrated autonomic services to the different cloud users but with a
very low degree of customization, as shown in Figure 18. Figure 18 shows that there
are two different AWS accounts in which five users are using services provided by
AWS with different rights. Three types of user groups using the AWS are (1) the ad-
ministrator (who is mainly responsible for creating, delivering, maintaining, ensuring,
and removing service), (2) the power user (who has fewer rights as compared to the
administrator and is mainly responsible for delivering, maintaining, and ensuring ser-
vice), and (3) the end-user or third party (who can only use the service).

ACM Computing Surveys, Vol. 48, No. 3, Article 42, Publication date: December 2015.

QoS-Aware Autonomic Resource Management in Cloud Computing: A Systematic Review 42:33

The degree of customization of AWS decreases from the administrator to the end-
user. Due to less customization at the end-user level, AWS is not very effective and
has difficulty fulfilling the QoS requirements as described by users in the SLA. Thus,
there is a need to automatically manage QoS requirements of cloud users, thus helping
the cloud providers in achieving the SLAs and avoiding SLA violations. To resolve this
problem, there is need for a QoS-aware autonomic resource management technique
that uses the best hardware and software configurations to optimize both QoS targets:
user centric (budget and execution time) and resource centric (reliability, availability,
and utilization).

The following advantages can be achieved in the future:

• By providing a GUI-based web service by AWS, users can easily specify their service
requirements, so AWS will be easy to use.

• By delivering service with a high degree of customization, users can create their ser-
vice specifications by selecting the database, web application platform, programming
language, operating system, and other services according to their requirements, so
AWS will more flexible.

• To make AWS much more effective, users have to pay only for using resources like
storage, compute power, and so forth for a required time without a long-term contract.

• By incorporating a virtual backbone (global computing infrastructure), AWS will
become reliable.

• Scalability of service can be improved by using AWS tools (elastic load balancing
and auto-scaling) in which applications can be easily scaled down or up based on
requirements.

• AWS will become secure by using an E2E approach including software, operational,
and physical measures.

To resolve the aforementioned issues of autonomic cloud computing, there is a need
for a QoS-aware autonomic resource management mechanism. QoS-aware autonomic
management is done on two levels: global and local, as shown in Figure 19. On the
global level, cloud consumers interact with the system to submit their workload or
application for execution along with QoS requirements pertaining to the SLA. The
task of execution of the workload or application is divided into subtasks or small levels
called local levels. The actual execution of the workload or application is performed on
the local level after verification of availability of resources. The knowledge pool is used
to store the predefined rules defined by the system administrator, and the rules will be
updated from time to time based on new polices of resource allocation.

QoS is the ability to assume a desired level of performance based on the QoS require-
ments described by consumers. The SLA is an authorized document that specifies QoS
requirements stated by cloud consumers in written form [Singh and Chana 2015a].
QoS-aware autonomic resource management is based on the architecture of autonomic
systems defined in Figure 2, in which the AE is an agent that accepts the input and
produces final results based on QoS parameters defined in the SLA. It contains four
phases (Monitor, Analyze, Plan, and Execute) of the autonomic system as discussed
in Section 3.1. QoS-aware autonomic resource management systems are composed of
AEs and an AM. The AM is an intelligent agent that interacts with the environment
through manageability interfaces (Sensors and Effectors) and takes actions according
to the input received from sensors and rules defined in the knowledge base in low-level
language. Sensors perform two functions: resource discovery and resource monitoring
[Singh and Chana 2015b]. The AM is configured by the administrator based on alerts
and actions in high-level language.

Resource discovery is able to find adequate (with minimum cost and execution
time) resources for the workload or application based on QoS requirements through

ACM Computing Surveys, Vol. 48, No. 3, Article 42, Publication date: December 2015.

42:34 S. Singh and I. Chana

Fig. 19. QoS-aware autonomic resource management in the cloud.

Composition. Composition is able to determine the best resource/workload pair for ex-
ecution. The resource monitor is able to monitor that the conditions are being fulfilled
as specified in the policy and ensures that all the resources are provided. All the inputs
received from monitors will be analyzed and action will be taken according to the alert
generated by the QoS monitor.

The QoS monitor is used to verify whether all the QoS attributes defined in the
SLA are fulfilled or not by using Adaptation. If they are not fulfilled, then the QoS
monitor will generate an alert to provide more resources to fulfill the current demand
of the application. The adaptation function is able to maintain effective execution in
case of an abrupt change in QoS conditions. Based on QoS requirements and the policy
of the system, resources are provisioned to the workload or application and Resource
Provisioning information will be sent to users for verification [Singh and Chana 2015c].
After successful verification by users, the AE allocates resources to workload(s) for
Resource Scheduling [Singh and Chana 2015d]. The executor performs the final step
of resource execution and completes the execution within a specified deadline, and the
system will be continuing for other workloads or applications.

ACM Computing Surveys, Vol. 48, No. 3, Article 42, Publication date: December 2015.

QoS-Aware Autonomic Resource Management in Cloud Computing: A Systematic Review 42:35

9. FUTURE RESEARCH DIRECTIONS IN QOS-AWARE AUTONOMIC CLOUD COMPUTING

Though a lot of progress has been achieved and scalable computing infrastructures are
easily implemented by cloud computing on pay-per-use basis, still there are many issues
and challenges in this field that need to be addressed. The following research directions
have been identified from the existing literature [Mosallanejad et al. 2014; Malik et al.
2011; Maurer et al. 2013; You et al. 2011; Lama and Zhou 2012; Khargharia et al.
2008; Kijsipongse and Vannarat 2010; Bashar 2013; Mao et al. 2010; Konstantinou
et al. 2013; Bu et al. 2013; Sah et al. 2014; Cardellini et al. 2011; Singh and Singh
2014; Feller et al. 2012; Emeakaroha et al. 2012; Viswanathan et al. 2011; Hossny
et al. 2012] of QoS-aware autonomic cloud computing:

a) Service-Level Agreements: There is a need for autonomic cloud infrastructures to
fulfill the QoS requirements described by cloud users in terms of SLA and to reduce
interactions between cloud consumers and the computing environment. Therefore,
an effective strategy to detect SLA violations in advance is a research issue that can
avoid performance degradation.

b) Autonomic Resource Provisioning: Self- or autonomic management implies the fact
that the service is able to self-manage as per its environment. An autonomic man-
agement system is required for dynamic resource provisioning to fulfill the QoS
requirements as described by cloud users and to reduce service costs and improve
efficiency of the system. Cloud computing is an effective platform to execute web-
based services on a pay-as-you-go basis, but due to larger variation in user demand,
it is difficult to provision resources effectively.

c) Quality of Service: To fulfill the QoS requirements of cloud services, a required
amount of resources are provisioned by service providers. Based on these QoS re-
quirements, SLAs are designed and SLA violations are detected regularly, which
further decides the penalty or compensation in case of SLA violations. Thus, there is
need to provision an adequate amount of resources dynamically by service providers
to reduce or avoid SLA violations.

d) Resource Scheduling: The challenges of resource scheduling include dispersion, un-
certainty, and heterogeneity of resources that are not resolved with traditional
resource management mechanisms in cloud environments. Thus, there is a need to
make cloud services and cloud-oriented applications efficient by taking care of these
properties in the cloud environment. The aim of resource scheduling is to allocate
appropriate resources at the right time to the right workloads so those applications
can utilize the resources effectively. In other words, the amount of resources should
be minimum for a workload to maintain a desirable level of service quality or maxi-
mize throughput (or minimize workload completion time) of a workload. To address
this problem, new solutions need to be developed.

Open research challenges existing in the field of QoS-aware autonomic cloud com-
puting include the following:

• Due to the large number of user requests in multiple service queues, cloud-based
autonomic systems are lacking in user interactions with the system, and more QoS
parameters like bandwidth, storage, CPU power, and so forth can be added to test
the performance of the system in a better way.

• Autonomic systems consider only functional requirements (input and output) in
SLAs; nonfunctional requirements (QoS) should be written into SLAs for better
agreement and performance. Important QoS requirements in autonomic research
management include scalability, reliability, security, execution time, cost, and avail-
ability.

ACM Computing Surveys, Vol. 48, No. 3, Article 42, Publication date: December 2015.

42:36 S. Singh and I. Chana

• Cloud-based autonomic systems can be extended by adding an optimized query plan
(store queries in data structure and execute based on their priorities decided based
on QoS requirements), which will improve user satisfaction.

• Presently, autonomic computing systems work as single-tier architecture. To achieve
better performance in terms of deadlines, job distribution, availability, and other
important QoS parameters, the cloud auto-scaling architecture should be shifted to
a multitier application environment.

• A tremendous amount of energy is consumed by these data centers, which leads to
high operational costs and contributes toward carbon footprints to the environment.
So, a cloud-based autonomic system can be further extended by adding energy effi-
ciency as a QoS parameter, which will further reduce the impact on the environment.

• The utility of stochastic, predictive, and heuristic approaches in terms of overhead
and runtime complexity can be investigated, which is not discussed in existing cloud-
based autonomic systems.

• Immediate decisions in autonomic systems can be improved by using optimized
data mining or machine-learning techniques. As a result, autonomic systems keep
the computing system stable in unpredictable conditions and adapt quickly in new
environmental conditions like software and hardware failures.

• Cloud-based autonomic systems can be extended by adding heterogeneous resources
in the mechanism of resource allocation by adding more infrastructure providers,
which will be effective to serve more user requests and fulfill user requirements
(QoS).

• Scalability, storage management, and load balancing of autonomic systems can be
improved by using a distributed NoSQL database because these databases have a
high recall rate and precision rate.

• Cloud-based autonomic systems can be extended by using multiple data centers
instead of a single data center to improve scalability and availability, and the knowl-
edge database can be used to track; further, availability of multiple data centers
reduces SLA violations.

• The reliability of autonomic systems can be improved by adding proactive schedulers
and using scheduling decisions based on infrastructure and network characteristics
using rule-based policies in which systems make decision automatically.

• Search time to find an optimal configuration in cloud-based autonomic systems can
be improved through machine-learning techniques. As a result, based on similar QoS
requirements, workload can be clustered and executed on the same set of resources
simultaneously.

• Performance of cloud-based autonomic systems can be improved by adding execution
time and cost-based resource scheduling policies for self-optimization to improve
resource utilization. Reducing cost will be profitable for users, and reducing the
execution time will be beneficial for providers.

• Autonomic systems can be extended by adding component-level testing through repli-
cation and a check-pointing-based approach to improve the reliability of the system.
The check-pointing technique is used to transfer the failed workload or tasks to the
other available resources to start the execution from the point of failure. In the repli-
cation technique, workload is executed on more than one resource to increase the
chances of successful execution.

To overcome these challenges, a resource management technique should be devel-
oped that provisions and schedules the cloud resources as per the user requirements
(QoS). The resource management technique should be self-managing (autonomic) so
as to adapt itself at runtime and would help in mitigating SLA violations and in re-
ducing costs. For example, if the SLA requires auto-scaling and performance, based on

ACM Computing Surveys, Vol. 48, No. 3, Article 42, Publication date: December 2015.

QoS-Aware Autonomic Resource Management in Cloud Computing: A Systematic Review 42:37

SLAs, urgent cloud workloads would be placed in priority queue for earlier execution by
allocating the reserve resources automatically. Dynamic scalability needs to be consid-
ered in autonomic techniques to handle situations like overloading and underloading.
Possible future research directions are as follows:

• Further research in the area of autonomic cloud computing based on various QoS
parameters is an open issue.

• The real impact of SLA is still questionable. SLA violations need to be detected
during autonomic resource provisioning and execution in cloud computing.

• It is very difficult to find the most suitable resource for specific workloads for effective
autonomic resource management. For efficient resource management in autonomic
cloud computing, there is a need to find the main reasons for detection of workloads
and resources for better mappings in the future.

• Different QoS parameters have to be reassessed to implement the autonomic resource
management mechanisms for the given QoS parameters.

• Workloads need to be executed automatically so as to be scalable and flexible, and to
avoid overloading and underloading.

• There is also a need to test the QoS-aware resource management on a real cloud
environment. Based on existing research, we found that autonomic management of
resources is an open research issue.

10. DISCUSSION

We reviewed 110 research articles in this research work and presented them in a
systematic and categorized manner. Existing surveys by Buyya et al. [2012] and
Rahman et al. [2011] reflect various research issues. The initial void for future work
has been filled by these surveys in the domain of autonomic computing. This survey
article presents the most recent research work related to autonomic cloud computing
and augments the previous surveys. A systematic technique has been used to develop
an evolution of autonomic cloud computing that identifies Quality of Service (QoS) and
Focus of Study (FoS) parameters in self-management. We explored autonomic cloud
computing in detail and compared the QoS-aware autonomic techniques based on im-
portant aspects of self-management. We recognized the research issues addressed and
open challenges still unresolved in autonomic cloud computing. Furthermore, we have
found key discoveries in autonomic cloud computing that occurred after 2008. In this
research article, the existing research is presented in chronological order in different
sections, which makes it easy for perspective readers and authors to find the latest re-
search done after 2009. Key outcomes of our methodical literature review are discussed
in this section along with weakness and strengths of the evidence.

This methodical analysis has suggestions for prospective research scholars who are
already working in this area and looking for new ideas, and for professional experts
working in cloud-based services providing enterprises who want to use different QoS-
aware autonomic resource management techniques for improving cloud services. Many
open issues are presented for professional experts and prospective researchers. Self-
management is an evolving field of research in the cloud. Existing research authenti-
cates that there is inconsistency between the provider and user as to mapping the work-
load with appropriate resources without violating SLAs. There is a need for a certified
autonomic QoS-based resource scheduling framework to overcome the time-consuming
process of manual mapping of workloads with adequate resource; the research should
be focused on every type of autonomic cloud computing technique based on scheduling
criteria and objective functions. Then, this authenticated framework would help to
build the foundation for further research in the area of autonomic cloud computing,
which can be used in the industry and research.

ACM Computing Surveys, Vol. 48, No. 3, Article 42, Publication date: December 2015.

42:38 S. Singh and I. Chana

For supporting autonomic computing in the cloud environment, the following major
research challenges need to be solved:

• Due to difficulty in predicting the behavior (in terms of QoS requirements) and de-
mand (in terms of resources) of the workload/application, there is a need for an effec-
tive QoS-aware autonomic resource management technique that can easily make the
right decisions regarding dynamic scaling of resources and workloads/applications.

• In the present scenario, it is very difficult to make the autonomic resource man-
agement technique cost effective and energy efficient due to increasing energy
requirements and operating costs. To resolve this problem, there is a need for an
autonomic system that uses the best hardware and software configurations to im-
prove resource utilizations and fulfill important QoS parameters.

• There is a need to develop an autonomic resource management technique that op-
timizes both QoS targets: user centric (budget and execution time) and resource
centric (reliability, availability, and utilization).

• Most of the cloud companies have a large number of resources to serve the different
business applications and a large amount of data, but it is difficult to migrate and
manage due to security and privacy issues related to interoperability and integration.

• The QoS-aware autonomic resource management technique needs to be decentral-
ized. In centralized distributed systems, it is very difficult to manage the large num-
ber of user requests in multiple service queues, which further leads to performance
degradation (decreases reliability and scalability).

This research depicts a broad methodical literature analysis of autonomic cloud
computing techniques to find research gaps for future research.

11. CONCLUSIONS

This research article presents a methodical survey on autonomic cloud computing
(ACC). The taxonomy of ACC has been presented based on six different perceptions:
(1) design of application, (2) workload scheduling, (3) allocation, (4) monitoring, (5) self-
management, and (6) QoS requirements. After this, a taxonomy of every perspective
is presented based on different characteristics of autonomic resource management.
Further, a survey on QoS-aware autonomic resource management is conducted and a
taxonomy mapped to the key characteristics of QoS-aware autonomic resource man-
agement to find the gaps in existing research. This survey helps to find the research
gaps existing in autonomic cloud computing, and research issues still existing have
been identified. We summarized the existing literature in the form of systematic evo-
lution of autonomic cloud computing. To know the impact of QoS requirements on
self-management, there is a need to understand the evolution of autonomic cloud com-
puting to determine whether the provisioned resources are scheduled efficiently or not.
The current research on autonomic cloud computing is more focused on self-optimizing
and self-healing aspects. In order to provide protection and incorporate dynamic scal-
ability in autonomic cloud computing, ACCSs are required to focus on self-configuring
and self-protecting policies. The following facts can be further concluded:

• Contrast and assessment of autonomic cloud computing in the cloud can aid in select-
ing the autonomic scheduling algorithm based on a workload’s QoS requirements.

• QoS parameters can be improved in the delivered cloud service if resources are
reserved in advance.

• Proper matching of workload and resource can improve the performance significantly.
• Allocation of resources based on type of workload (homogenous and heterogeneous)

can improve the resource utilization.

ACM Computing Surveys, Vol. 48, No. 3, Article 42, Publication date: December 2015.

QoS-Aware Autonomic Resource Management in Cloud Computing: A Systematic Review 42:39

REFERENCES

Omar A. Rahman, Masaharu Munetomo, and Kiyoshi Akama. 2011. Multi-level autonomic architec-
ture for the management of virtualized application environments in cloud platforms. In Proceed-
ings of the IEEE International Conference on Cloud Computing (CLOUD’11). IEEE, 754–755.
DOI:http://dx.doi.org/10.1109/CLOUD.2011.58

Bernardetta Addis, Danilo Ardagna, Barbara Panicucci, and Li Zhang. 2010. Autonomic management of cloud
service centers with availability guarantees. In Proceedings of the IEEE 3rd International Conference
on Cloud Computing (CLOUD’10). IEEE, 220–227. DOI:http://dx.doi.org/10.1109/CLOUD.2010.19

Amazon Web Services. 2013. Amazon EC2 instances. Retrieved from http://aws.amazon.com/ec2/instance-
types/.

Michele Amoretti, Francesco Zanichelli, and Gianni Conte. 2013. Efficient autonomic cloud comput-
ing using online discrete event simulation. J. Parallel Distrib. Comput. 73, 6 (2013), 767–776.
DOI:http://dx.doi.org/10.1016/j.jpdc.2013.02.008

S. Anithakumari and K. Chandra Sekaran. 2014. Autonomic SLA management in cloud computing services.
In Recent Trends in Computer Networks and Distributed Systems Security. Springer, Berlin, 151–159.
DOI:http://dx.doi.org/10.1007/978-3-642-54525-2_13

Danilo Ardagna, Barbara Panicucci, Marco Trubian, and Li Zhang. 2012. Energy-aware autonomic re-
source allocation in multitier virtualized environments. IEEE Trans. Services Comput. 5, 1 (2012),
2–19. DOI:http://dx.doi.org/10.1109/TSC.2010.42

Marcos D. Assunção, Rodrigo N. Calheiros, Silvia Bianchi, Marco A. S. Netto, and Rajkumar Buyya. 2015.
Big Data computing and clouds: Trends and future directions. J. Parallel Distrib. Comput. 79 (2015),
3–15. DOI:http://dx.doi.org/10.1016/j.jpdc.2014.08.003

Ines Ayadi, Noemie Simoni, and Gladys Diaz. 2013. QoS-aware component for cloud computing. In
Proceedings of the 9th International Conference on Autonomic and Autonomous Systems (ICAS’13).
14–20. Retrieved from https://www.thinkmind.org/index.php?view=article&articleid=icas_2013_1_30_
20051.

Abul Bashar. 2013. Autonomic scaling of cloud computing resources using BN-based prediction models.
In Proceedings of the IEEE 2nd International Conference on Cloud Networking (CloudNet’13). IEEE,
200–204. DOI:http://dx.doi.org/10.1109/CloudNet.2013.6710578

Thomas Beach, Omer Rana, Yacine Rezgui, and Manish Parashar. 2015. Governance model for cloud com-
puting in building information management. IEEE Trans. Services Comput. 8, 2 (2015), 314–327.
DOI:http://dx.doi.org/10.1109/TSC.2013.50

Anton Beloglazov, Jemal Abawajy, and Rajkumar Buyya. 2012. Energy-aware resource allocation heuristics
for efficient management of data centers for cloud computing. Future Generation Comput. Syst. 28, 5
(2012), 755–768. http://dx.doi.org/10.1016/j.future.2011.04.017

Nicolas Bonvin, Thanasis G. Papaioannou, and Karl Aberer. 2011. Autonomic SLA-driven provisioning for
cloud applications. In Proceedings of the 11th IEEE/ACM International Symposium on Cluster, Cloud
and Grid Computing. IEEE, 434–443. DOI:http://dx.doi.org/10.1109/CCGrid.2011.24

Sara Bouchenak. 2010. Automated control for SLA-aware elastic clouds. In Proceedings of the 5th Interna-
tional Workshop on Feedback Control Implementation and Design in Computing Systems and Networks.
ACM, 27–28. DOI:http://dx.doi.org/10.1145/1791204.1791210

Ivona Brandic and Scharam Dustdar. 2011. Grid vs cloud - A technology comparison. Inf. Technol.: Methods
Appl. Comput. Sci. Inf. Technol. 53, 4 (2011), 173–179. DOI:http://dx.doi.org/10.1524/itit.2011.0640

Ivan Breskovic, Michael Maurer, Vincent C. Emeakaroha, Ivona Brandic, and Schahram Dustdar. 2011.
Cost-efficient utilization of public SLA templates in autonomic cloud markets. In Proceedings of
the 4th IEEE International Conference on Utility and Cloud Computing (UCC’11). IEEE, 229–236.
DOI:http://dx.doi.org/10.1109/UCC.2011.38

Xiangping Bu, Jia Rao, and Cheng-Zhong Xu. 2013. Coordinated self-configuration of virtual machines
and appliances using a model-free learning approach. IEEE Trans. Parallel Distrib. Syst. 24, 4 (2013),
681–690. DOI:http://dx.doi.org/10.1109/TPDS.2012.174

Rajkumar Buyya, Rodrigo N. Calheiros, and Xiaorong Li. 2012. Autonomic cloud computing: Open challenges
and architectural elements. In Proceedings of the 3rd International Conference on Emerging Applications
of Information Technology (EAIT’12). IEEE, 3–10. DOI:http://dx.doi.org/10.1109/EAIT.2012.6407847

Rajkumar Buyya, Saurabh K. Garg, and Rodrigo N. Calheiros. 2011. SLA-oriented resource provi-
sioning for cloud computing: Challenges, architecture, and solutions. In Proceedings of the In-
ternational Conference on Cloud and Service Computing (CSC’11). IEEE, 1–10. DOI:http://dx.doi.
org/10.1109/CSC.2011.6138522

Valeria Cardellini, Emiliano Casalicchio, Francesco Lo Presti, and Luca Silvestri. 2011. SLA-aware
resource management for application service providers in the cloud. In Proceedings of the 1st

ACM Computing Surveys, Vol. 48, No. 3, Article 42, Publication date: December 2015.

42:40 S. Singh and I. Chana

International Symposium on Network Cloud Computing and Applications (NCCA’11). IEEE, 20–27.
DOI:http://dx.doi.org/10.1109/NCCA.2011.11

Alexandra Carpen-Amarie. 2011. Towards a self-adaptive data management system for cloud environments.
In Proceedings of the IEEE International Symposium on Parallel and Distributed Processing Workshops
and PhD Forum (IPDPSW’11). IEEE, 2077–2080. DOI:http://dx.doi.org/10.1109/IPDPS.2011.381

Emiliano Casalicchio, Daniel A. Menascé, and Arwa Aldhalaan. 2013. Autonomic resource provisioning in
cloud systems with availability goals. In Proceedings of the 2013 ACM Cloud and Autonomic Computing
Conference. ACM, 1–10. DOI:http://dx.doi.org/10.1145/2494621.2494623

Emiliano Casalicchio and Luca Silvestri. 2013. Mechanisms for SLA provisioning in cloud-based service
providers. Comput. Networks 57, 3 (2013), 795–810. DOI:http://dx.doi.org/10.1016/j.comnet.2012.10.020

Simon Caton, Ivan Breskovic, and Ivona Brandic. 2013. A conceptual framework for simulating auto-
nomic cloud markets. In Cloud Computing. Springer International Publishing, 92–102. DOI:http://dx.doi.
org/10.1007/978-3-319-03874-2_10.

Simon Caton and Omer Rana. 2012. Towards autonomic management for cloud services based upon vol-
unteered resources. Concurrency and Computation: Practice and Experience 24, 9 (2012), 992–1014.
DOI:http://dx.doi.org/10.1002/cpe.1715

Inderveer Chana and Sukhpal Singh. 2014. Quality of service and service level agreements for cloud en-
vironments: Issues and challenges. In Cloud Computing-Challenges, Limitations and R&D Solutions.
Springer International Publishing, 51–72. DOI:http://dx.doi.org/10.1007/978-3-319-10530-7_3

Hanen Chihi, Walid Chainbi, and Khaled Ghedira. 2013. An energy-efficient self-provisioning ap-
proach for cloud resources management. ACM SIGOPS Operating Syst. Rev. 47, 3 (2013), 2–9.
DOI:http://dx.doi.org/10.1145/2553070.2553072

Inderpreet Chopra and Maninder Singh. 2014. SHAPE—An approach for self-healing and self-protection
in complex distributed networks. J. Supercomp. 67, 2 (2014), 585–613. DOI:http://dx.doi.org/10.1007/
s11227-013-1019-3

Defense Advanced Research Projects Agency. 1997. Retrieved from http://www.darpa.mil/sto/strategic/
suosas.html.

Diego Didona, Paolo Romano, Sebastiano Peluso, and Francesco Quaglia. 2014. Transactional auto scaler:
Elastic scaling of replicated in-memory transactional data grids. ACM Trans. Auton. Adapt. Syst. 9, 2
(2014), 1–32. DOI:http://dx.doi.org/10.1145/2620001

Vincent C. Emeakaroha, Marco A. S. Netto, Rodrigo N. Calheiros, Ivona Brandic, Rajkumar Buyya, and César
A. F. De Rose. 2012. Towards autonomic detection of SLA violations in Cloud infrastructures. Future
Generation Comput. Syst. 28, 7 (2012), 1017–1029. DOI:http://dx.doi.org/10.1016/j.future.2011.08.018

D. Cenk Erdil. 2013. Autonomic cloud resource sharing for intercloud federations. Future Generation Comput.
Syst. 29, 7 (2013), 1700–1708. DOI:http://dx.doi.org/10.1016/j.future.2012.03.025

Xavier Etchevers, Thierry Coupaye, Fabienne Boyer, and Noel De Palma. 2011. Self-configuration of dis-
tributed applications in the cloud. In Proceedings of the IEEE International Conference on Cloud Com-
puting (CLOUD’11). IEEE, 668–675. DOI:http://dx.doi.org/10.1109/CLOUD.2011.65

Xavier Etchevers, Thierry Coupaye, Fabienne Boyer, Noel De Palma, and Gwen Salaun. 2011. Automated
configuration of legacy applications in the cloud. In Proceedings of the 4th IEEE International Conference
on Utility and Cloud Computing (UCC’11). IEEE, 170–177. DOI:http://dx.doi.org/10.1109/UCC.2011.32

Farah Fargo, Cihan Tunc, Youssif Al-Nashif, and Salim Hariri. 2013. Autonomic performance-per-watt man-
agement (APM) of cloud resources and services. In Proceedings of the 2013 ACM Cloud and Autonomic
Computing Conference. ACM, 1–10. DOI:http://dx.doi.org/10.1145/2494621.2494624

M. N. Faruk and D. Sivakumar. 2014. Towards self-configured multi-agent resource allocation frame-
work for cloud computing environments. Int. J. Eng. Technol. 6, 2 (2014), 1–10. Retrieved from
http://www.enggjournals.com/ijet/docs/IJET14-06-02-201.pdf.

Eugen Feller, Louis Rilling, and Christine Morin. 2012. SNOOZE: A scalable and autonomic vir-
tual machine management framework for private clouds. In Proceedings of the 12th IEEE/ACM
International Symposium on Cluster, Cloud and Grid Computing (CCGRID’12). IEEE, 482–489.
DOI:http://dx.doi.org/10.1109/CCGrid.2012.71

Stefano Ferretti, Vittorio Ghini, Fabio Panzieri, Michele Pellegrini, and Elisa Turrini. 2010. QoS–aware
clouds. In Proceedings of the IEEE 3rd International Conference on Cloud Computing (CLOUD’10).
321–328. DOI:http://dx.doi.org/10.1109/CLOUD.2010.17

Saurabh K. Garg, Srinivasa K. Gopalaiyengar, and Rajkumar Buyya. 2011. SLA-based resource provi-
sioning for heterogeneous workloads in a virtualized cloud datacenter. In Algorithms and Architec-
tures for Parallel Processing. Springer, Berlin, 371–384. DOI:http://dx.doi.org/10.1007/978-3-642-24650-
0_32

ACM Computing Surveys, Vol. 48, No. 3, Article 42, Publication date: December 2015.

http://dx.doi.org/10.1007/978-3-319-03874-210
http://dx.doi.org/10.1007/978-3-319-03874-210
http://dx.doi.org/10.1007/s11227-013-1019-3
http://dx.doi.org/10.1007/s11227-013-1019-3

QoS-Aware Autonomic Resource Management in Cloud Computing: A Systematic Review 42:41

Ian Gergin, Bradley Simmons, and Marin Litoiu. 2014. A decentralized autonomic architecture for perfor-
mance control in the cloud. In Proceedings of the IEEE International Conference on Cloud Engineering
(IC2E’14). IEEE, 574–579. DOI:http://dx.doi.org/10.1109/IC2E.2014.75

Sukhpal S. Gill. 2015. Autonomic Cloud Computing: Research Perspective. 1–3. Retrieved from http://arxiv.
org/ftp/arxiv/papers/1507/1507.01546.pdf

Nikolay Grozev and Rajkumar Buyya. 2014. Multi-cloud provisioning and load distribution for three-
tier applications. ACM Trans. Auton. Adapt. Syst. 9, 3 (2014), 1–21. DOI:http://dx.doi.org/10.1145/
2662112

Ibrahim A. T. Hashem, Ibrar Yaqoob, Nor Badrul Anuar, Salimah Mokhtar, Abdullah Gani, and Samee Ullah
Khan. 2015. The rise of “big data” on cloud computing: Review and open research issues. Inform. Syst.
47 (2015), 98–115. DOI:http://dx.doi.org/10.1016/j.is.2014.07.006

Paul Horn. 2001. Autonomic computing: IBM’s perspective on the state of information technology. Tech-
nical Report, IBM Corporation. IBM, 1–38. Retrieved from http://people.scs.carleton.ca/∼soma/biosec/
readings/autonomic_computing.pdf.

Eman Hossny, Sara Salem, and Sherif M. Khattab. 2012. Towards automated user-centric cloud provi-
sioning: Job provisioning and scheduling on heterogeneous virtual machines. In Proceedings of the
8th International Conference on Informatics and Systems (INFOS’12). IEEE, 18–24. Retrieved from
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6236557.

Markus C. Huebscher and Julie A. McCann. 2008. A survey of autonomic computing—degrees, mod-
els, and applications. ACM Comput. Surv. (CSUR) 40, 3 (2008), 1–7. DOI:http://dx.doi.org/10.1145/
1380584.1380585

Waheed Iqbal, Matthew N. Dailey, and Diego Carrera. 2014. Low cost quality aware multi-tier ap-
plication hosting on the Amazon cloud. In Proceedings of the International Conference on Future
Internet of Things and Cloud (FiCloud’14). IEEE, 202–209. DOI:http://doi.ieeecomputersociety.org/
10.1109/FiCloud.2014.40.

Keith R. Jackson, Lavanya Ramakrishnan, Krishna Muriki, Shane Canon, Shreyas Cholia, John Shalf,
Harvey J. Wasserman, and Nicholas J. Wright. 2010. Performance analysis of high performance
computing applications on the Amazon web services cloud. In Proceedings of the IEEE 2nd Inter-
national Conference on Cloud Computing Technology and Science (CloudCom’10). IEEE, 159–168.
DOI:http://dx.doi.org/10.1109/CloudCom.2010.69

Pooyan Jamshidi, Aakash Ahmad, and Claus Pahl. 2014. Autonomic resource provisioning for cloud-based
software. In Proceedings of the 9th International Symposium on Software Engineering for Adaptive and
Self-Managing Systems. ACM, 95–104. DOI:http://dx.doi.org/10.1145/2593929.2593940

Sriram Kailasam, Nathan Gnanasambandam, Dharanipragada Janakiram, and Naveen Sharma. 2010.
Optimizing service level agreements for autonomic cloud bursting schedulers. In Proceedings of the In
ICPP Workshops. 285–294. DOI:http://dx.doi.org/10.1109/ICPPW.2010.54

Jeffrey O. Kephart and William E. Walsh. 2003. An architectural blueprint for autonomic computing.
Technical Report, IBM Corporation IBM, 1–29. Retrieved from http://www-03.ibm.com/autonomic/
pdfs/AC%20Blueprint%20White%20Paper%20V7.pdf.

Attila Kertesz, Gabor Kecskemeti, and Ivona Brandic. 2011. Autonomic SLA-aware service virtual-
ization for distributed systems. In Proceedings of the 19th Euromicro International Conference
on Parallel, Distributed and Network-Based Processing (PDP’11). IEEE, 503–510. DOI:http://dx.doi.
org/10.1109/PDP.2011.17

Bithika Khargharia, Salim Hariri, and Mazin S. Yousif. 2008. Autonomic power and performance
management for computing systems. Cluster Comput. 11, 2 (2008), 167–181. DOI:http://dx.doi.org/
10.1109/ICAC.2006.1662393

Ekasit Kijsipongse and Sornthep Vannarat. 2010. Autonomic resource provisioning in rocks clusters using
eucalyptus cloud computing. In Proceedings of the International Conference on Management of Emergent
Digital EcoSystems. ACM, 61–66. DOI:http://dx.doi.org/10.1145/1936254.1936265

Hyunjoo Kim, Manish Parashar, David J. Foran, and Lin Yang. 2009. Investigating the use of autonomic
cloudbursts for high-throughput medical image registration. In Proceedings of 10th IEEE/ACM Inter-
national Conference on Grid Computing. 34–41. DOI:http://dx.doi.org/10.1109/GRID.2009.5353065

Hyunjoo Kim, Yaakoub el-Khamra, Shantenu Jha, and Manish Parashar. 2009. An autonomic approach
to integrated HPC grid and cloud usage. In Proceedings of the 5th IEEE International Conference on
e-Science (e-Science’09). 366–373. DOI:http://dx.doi.org/10.1109/e-Science.2009.58

Barbara Kitchenham and Stuart Charters. 2007. Guidelines for performing systematic literature reviews
in software engineering. Technical Report EBSE-2007-01. 1–44. Retrieved from http://userpages.uni-
koblenz.de/∼laemmel/esecourse/slides/slr.pdf.

ACM Computing Surveys, Vol. 48, No. 3, Article 42, Publication date: December 2015.

http://arxiv.org/ftp/arxiv/papers/1507/1507.01546.pdf
http://arxiv.org/ftp/arxiv/papers/1507/1507.01546.pdf
http://people.scs.carleton.ca/~soma/biosec/readings/autonomiccomputing.pdf
http://people.scs.carleton.ca/~soma/biosec/readings/autonomiccomputing.pdf
http://ieeexplore.ieee.org/stamp/stamp.jsp?tpequals;amp;arnumberequals;6236557
http://dx.doi.org/10.1145/1380584.1380585
http://dx.doi.org/10.1145/1380584.1380585
http://dx.doi.org/10.1109/PDP.2011.17
http://dx.doi.org/10.1109/PDP.2011.17
http://userpages.uni-koblenz.de/~laemmel/esecourse/slides/slr.pdf
http://userpages.uni-koblenz.de/~laemmel/esecourse/slides/slr.pdf

42:42 S. Singh and I. Chana

Ioannis Konstantinou, Verena Kantere, Dimitrios Tsoumakos, and Nectarios Koziris. 2013. COCCUS:
Self-configured cost-based query services in the cloud. In Proceedings of the ACM SIGMOD Interna-
tional Conference on Management of Data. ACM, 1041–1044. DOI:http://dx.doi.org/10.1145/2463676.
2465233

DeKyriakos Kritikos, Barbara Pernici, Pierluigi Plebani, Cinzia Cappiello, Marco Comuzzi, Salima
Benrernou, Ivona Brandic, Attila Kertész, Michael Parkin, and Manuel Carro. 2013. A survey on ser-
vice quality description. ACM Comput. Surv. 46, 1 (2013), 1–58. DOI:http://dx.doi.org/10.1145/2522968.
2522969

Palden Lama and Xiaobo Zhou. 2012. AROMA: Automated resource allocation and configuration of mapre-
duce environment in the cloud. In Proceedings of the 9th International Conference on Autonomic Com-
puting. ACM, 63–72. DOI:http://dx.doi.org/10.1145/2371536.2371547

Jason Lango. 2014. Toward software-defined SLAs. Commun. ACM 57, 1 (2014), 54–60. DOI:http://dx.
doi.org/10.1145/2541883.2541894

Alessandro F. Leite, Tainá Raiol, Claude Tadonki, Maria Emilia M. T. Walter, Christine Eisenbeis, and Alba
Cristina Magalhães Alves de Melo. 2014. EXCALIBUR: An autonomic cloud architecture for executing
parallel applications. In Proceedings of the 4th International Workshop on Cloud Data and Platforms.
ACM, 1–6. DOI:http://dx.doi.org/10.1145/2592784.2592786

Wenrui Li, Pengcheng Zhang, and Zhongxue Yang. 2012. A framework for self-healing service compositions
in cloud computing environments. In Proceedings of the 19th IEEE International Conference on In Web
Services (ICWS’12). IEEE, 690–691. DOI:http://dx.doi.org/10.1109/ICWS.2012.109

Ravi K. Madduri, Paul Dave, Dinanath Sulakhe, Lukasz Lacinski, Bo Liu, and Ian T. Foster. 2013. Ex-
periences in building a next-generation sequencing analysis service using galaxy, globus online and
Amazon web service. In Proceedings of the Conference on Extreme Science and Engineering Discovery
Environment: Gateway to Discovery. ACM, 1–3. DOI:http://dx.doi.org/10.1145/2484762.2484827

Martina Maggio, Henry Hoffmann, Alessandro V. Papadopoulos, Jacopo Panerati, Marco D. Santambro-
gio, Anant Agarwal, and Alberto Leva. 2012. Comparison of decision-making strategies for self-
optimization in autonomic computing systems. ACM Trans. Auton. Adapt. Syst. 7, 4 (2012) 1–32.
DOI:http://dx.doi.org/10.1145/2382570.2382572

Prodromos Makris, Dimitrios N. Skoutas, and Charalabos Skianis. 2013. A survey on context-aware mobile
and wireless networking: On networking and computing environments’ integration. IEEE Commun.
Surv. Tutorials 15, 1 (2013), 362–386. DOI:http://dx.doi.org/10.1109/SURV.2012.040912.00180

Sheheryar Malik and Fabrice Huet. 2011. Adaptive fault tolerance in real time cloud comput-
ing. In Proceedings of the IEEE World Congress on Services (SERVICES’11). IEEE, 280–287.
DOI:http://dx.doi.org/10.1109/SERVICES.2011.108

Wayne S. Mandak and Charles A. Stowell. 2000. Dynamic assembly for system adaptability, dependabil-
ity and assurance (DASADA) project analysis. PhD dissertation. Naval Postgraduate School, Mon-
terey, California. Retrieved from http://calhoun.nps.edu/bitstream/handle/10945/10926/ADA393486.
pdf?sequencThis.

Ming Mao, Jie Li, and Marty Humphrey. 2010. Cloud auto-scaling with deadline and budget constraints.
In Proceedings of the 11th IEEE/ACM International Conference on Grid Computing (GRID’10). IEEE,
41–48. DOI:http://dx.doi.org/10.1109/GRID.2010.5697966

Patrick Martin, Andrew Brown, Wendy Powley, and Jose Luis Vazquez-Poletti. 2011. Autonomic management
of elastic services in the cloud. In Proceedings of the IEEE Symposium on Computers and Communica-
tions (ISCC’11). IEEE, 135–140. DOI:http://dx.doi.org/10.1109/ISCC.2011.5984006

Toni Mastelic, Ariel Oleksiak, Holger Claussen, Ivona Brandic, Jean-Marc Pierson, and Athanasios V.
Vasilakos. 2014. Cloud computing: Survey on energy efficiency. ACM Comput. Surv. 47, 2 (2014), 1–
36. DOI:http://dx.doi.org/10.1145/2656204

Michael Maurer, Ivona Brandic, and Rizos Sakellariou. 2011. Enacting SLAs in clouds using rules. In
Euro-Par 2011 Parallel Processing. Springer, Berlin, 455–466. DOI:http://dx.doi.org/10.1007/978-3-642-
23400-2_42

Michael Maurer, Ivona Brandic, and Rizos Sakellariou. 2012. Self-adaptive and resource-efficient SLA en-
actment for cloud computing infrastructures. In Proceedings of the IEEE 5th International Conference
on Cloud Computing (CLOUD’12). IEEE, 368–375. DOI:http://dx.doi.org/10.1109/CLOUD.2012.55

Michael Maurer, Ivona Brandic, and Rizos Sakellariou. 2013. Adaptive resource configuration for
cloud infrastructure management. Future Generation Comput Syst. 29, 2 (2013), 472–487.
DOI:http://dx.doi.org/10.1016/j.future.2012.07.004

E. Michael Maximilien and Munindar P. Singh. 2004. Toward autonomic web services trust and selection.
In Proceedings of the 2nd International Conference on Service Oriented Computing. ACM, 212–221.
DOI:http://dx.doi.org/10.1145/1035167.1035198

ACM Computing Surveys, Vol. 48, No. 3, Article 42, Publication date: December 2015.

http://dx.doi.org/10.1145/2522968.2522969
http://dx.doi.org/10.1145/2522968.2522969
http://dx.doi.org/10.1145/2541883.2541894
http://dx.doi.org/10.1145/2541883.2541894
http://calhoun.nps.edu/bitstream/handle/10945/10926/ADA393486.pdf?sequencThis
http://calhoun.nps.edu/bitstream/handle/10945/10926/ADA393486.pdf?sequencThis

QoS-Aware Autonomic Resource Management in Cloud Computing: A Systematic Review 42:43

Philip Mayer, José Velasco, Annabelle Klarl, Rolf Hennicker, Mariachiara Puviani, Francesco Tiezzi,
Rosario Pugliese, Jaroslav Keznikl, and Tomáš Bureš. 2015. The autonomic cloud. In Soft-
ware Engineering for Collective Autonomic Systems. Springer International Publishing, 495–512.
DOI:http://dx.doi.org/10.1007/978-3-319-16310-9_16

Michele Mazzucco. 2010. Towards autonomic service provisioning systems. In Proceedings of the 10th
IEEE/ACM International Conference on Cluster, Cloud and Grid Computing. IEEE, 273–282.
DOI:http://dx.doi.org/10.1109/CCGRID.2010.125

Rajat Mehrotra, Srishti Srivastava, Ioana Banicescu, and Sherif Abdelwahed. 2014. An interaction balance
based approach for autonomic performance management in a cloud computing environment. In Adaptive
Resource Management and Scheduling for Cloud Computing. Springer International Publishing, 52–70.
DOI:http://dx.doi.org/10.1007/978-3-319-13464-2_5

Jose O. Melendez, Anshuman Biswas, Shikharesh Majumdar, Biswajit Nandy, Marzia Zaman, Pradeep
Srivastava, and Nishith Goel. 2013. A framework for automatic resource provisioning for private clouds.
In Proceedings of the 13th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing
(CCGrid’13). IEEE, 610–617. DOI:http://dx.doi.org/10.1109/CCGrid.2013.91

Gabriele Mencagli, Marco Vanneschi, and Emanuele Vespa. 2014. A cooperative predictive control approach
to improve the reconfiguration stability of adaptive distributed parallel applications. ACM Trans. Auton.
Adapt. Syst. 9, 1, (2014), 1–27. DOI:http://dx.doi.org/10.1145/2567929

Mohamed Mohamed, Mourad Amziani, Djamel Belaı̈d, Samir Tata, and Tarek Melliti. 2014. An autonomic
approach to manage elasticity of business processes in the Cloud. Future Generation Comput. Syst. 50,
(2014), 49–61. DOI:http://dx.doi.org/10.1016/j.future.2014.10.017

Rafael Moreno-Vozmediano, Rubén S. Montero, and Ignacio M. Llorente. 2013. Key challenges in cloud
computing: Enabling the future internet of services. IEEE Internet Comput. 17, 4 (2013), 18–25.
DOI:http://dx.doi.org/10.1109/MIC.2012.69

Ahmad Mosallanejad, Rodziah Atan, Masrah Azmi Murad, and Rusli Abdullah. 2014. A hierarchical self-
healing SLA for cloud computing. Int. J. Digital Information Wireless Commun. (IJDIWC) 4, 1 (2014),
43–52. DOI:http://dx.doi.org/10.17781/P001082

Nicola Muscettola, P. Pandurang Nayak, Barney Pell, and Brian C. Williams. 1998. Remote agent:
To boldly go where no AI system has gone before. Artific. Intell. 103, 1 (1998), 5–47.
DOI:http://dx.doi.org/10.1016/S0004-3702(98)00068-X

Vivek Nallur, Rami Bahsoon, and Xin Yao. 2009. Self-optimizing architecture for ensuring quality at-
tributes in the cloud. In Proceedings of the Joint Working IEEE/IFIP Conference on Software Ar-
chitecture and European Conference on Software Architecture (WICSA/ECSA’09). IEEE, 281–284.
DOI:http://dx.doi.org/10.1109/WICSA.2009.5290820

Ripal Nathuji, Aman Kansal, and Alireza Ghaffarkhah. 2010. Q-Clouds: Managing performance interfer-
ence effects for QoS-aware clouds. In Proceedings of the European Conference on Computer Systems
(EUROSYS’10). 237–250. DOI:http://dx.doi.org/10.1145/1755913.1755938

Oliver Niehörster and André Brinkmann. 2011. Autonomic resource management handling delayed configu-
ration effects. In Proceedings of the IEEE 3rd International Conference on Cloud Computing Technology
and Science (CloudCom’11). IEEE, 138–145. IEEE. DOI:http://dx.doi.org/10.1109/CloudCom.2011.28

Suraj Pandey, William Voorsluys, Sheng Niu, Ahsan Khandoker, and Rajkumar Buyya. 2012. An autonomic
cloud environment for hosting ECG data analysis services. Future Generation Comput. Syst. 28, 1 (2012),
147–154. DOI:http://dx.doi.org/10.1016/j.future.2011.04.022

Giuseppe Papuzzo and Giandomenico Spezzano. 2011. Autonomic management of workflows on hybrid
grid-cloud infrastructure. In Proceedings of the 7th International Conference on Network and Ser-
vices Management. International Federation for Information Processing, 230–233. Retrieved from
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6104004.

Manish Parashar and Salim Hariri. 2005. Autonomic grid computing. In Proceedings of Interna-
tional Conference on Autonomic Computing. 1–10. DOI:http://users.cs.cf.ac.uk/O.F.Rana/barcelona-ac-
course/autonomic-computing-intro.pdf

Norman Paton, Marcelo A. T. De Aragão, Kevin Lee, Alvaro A. A. Fernandes, and Rizos Sakellariou. 2009.
Optimizing utility in cloud computing through autonomic workload execution. Bull. Technical Committee
on Data Eng. 32, 1 (2009), 51–58. Retrieved from http://www.cs.man.ac.uk/˜rizos/papers/bde09.pdf.

Roberto D. Pietro, Flavio Lombardi, Fabio Martinelli, and Daniele Sgandurra. 2013. Anticheetah: An au-
tonomic multi-round approach for reliable computing. In Proceedings of the IEEE 10th International
Conference on Ubiquitous Intelligence and Computing, 2013, and Autonomic and Trusted Computing
(UIC/ATC’13). IEEE, 371–379. DOI:http://dx.doi.org/10.1109/UIC-ATC.2013.77

Guangzhi Qu, Osamah A. Rawashdeh, and Dunren Che. 2010. Self-protection against attacks in
an autonomic computing environment. IJ Comput. Appl. 17, 4 (2010), 250–256. Retrieved from
http://www2.cs.siu.edu/˜dche/publications/ijca10_qu.pdf.

ACM Computing Surveys, Vol. 48, No. 3, Article 42, Publication date: December 2015.

42:44 S. Singh and I. Chana

Andres Quiroz, Hyunjoo Kim, Manish Parashar, Nathan Gnanasambandam, and Naveen Sharma.
2009. Towards autonomic workload provisioning for enterprise grids and clouds. In Proceed-
ings of the 10th IEEE/ACM International Conference on Grid Computing. IEEE, 50–57.
DOI:http://dx.doi.org/10.1109/GRID.2009.5353066

Mustafizur R. Rahman, Rajiv Ranjan, Rajkumar Buyya, and Boualem Benatallah. 2011. A taxonomy
and survey on autonomic management of applications in grid computing environments. Concurrency
and Computation: Practice and Experience 23, 16 (2011), 1990–2019. DOI:http://dx.doi.org/10.1002/cpe.
1734

Massimiliano Rak, Antonio Cuomo, and Umberto Villano. 2011. CHASE: An autonomic service en-
gine for cloud environments. In Proceedings of the 20th IEEE International Workshops on En-
abling Technologies: Infrastructure for Collaborative Enterprises (WETICE’11). IEEE, 116–121.
DOI:http://dx.doi.org/10.1109/WETICE.2011.21

Rajiv Ranjan, Lizhe Wang, Albert Y. Zomaya, Dimitrios Georgakopoulos, Xian-He Sun, and Guojun Wang.
2015. Recent advances in autonomic provisioning of big data applications on clouds. IEEE Trans. Cloud
Comput. 3, 2 (2015), 101–104. DOI:http://dx.doi.org/10.1109/TCC.2015.2437231

Bhaskar P. Rimal, Admela Jukan, Dimitrios Katsaros, and Yves Goeleven. 2011. Architectural require-
ments for cloud computing systems: an enterprise cloud approach. J. Grid Comput. 9, 1 (2011), 3–26.
DOI:http://dx.doi.org/10.1007/s10723-010-9171-y

Ivan Rodero, Hariharasudhan Viswanathan, Eun Kyung Lee, Marc Gamell, Dario Pompili, and Manish
Parashar. 2012. Energy-efficient thermal-aware autonomic management of virtualized HPC cloud in-
frastructure. J. Grid Comput. 10, 3 (2012), 447–473. DOI:http://dx.doi.org/10.1007/s10723-012-9219-2

Ivan Rodero, Juan Jaramillo, Andres Quiroz, Manish Parashar, and Francesc Guim. 2010. To-
wards energy-aware autonomic provisioning for virtualized environments. In Proceedings of the
19th ACM International Symposium on High Performance Distributed Computing. ACM, 320–323.
DOI:http://dx.doi.org/10.1145/1851476.1851520

Sushil K. Sah and Shashidhar R. Joshi. 2014. Scalability of efficient and dynamic workload dis-
tribution in autonomic cloud computing. In Proceedings of the International Conference on Is-
sues and Challenges in Intelligent Computing Techniques (ICICT’14). IEEE, 12–18. DOI:http://dx.
doi.org/10.1109/ICICICT.2014.6781244

Mazeiar Salehie and Ladan Tahvildari. 2005. Autonomic computing: Emerging trends and open problems.
ACM SIGSOFT Software Eng. Notes 30, 4 (2005), 1–7. DOI:http://dx.doi.org/10.1145/1082983.1083082

Zohreh Sanaei, Saeid Abolfazli, Abdullah Gani, and Rajkumar Buyya. 2014. Heterogeneity in mobile cloud
computing: Taxonomy and open challenges. IEEE Commun. Surv. Tutorials 16, 1 (2014), 369–392.
DOI:http://dx.doi.org/10.1109/SURV.2013.050113.00090

Prasad Saripalli, G. V. R. Kiran, R. Ravi Shankar, Harish Narware, and Nitin Bindal. 2011. Load
prediction and hot spot detection models for autonomic cloud computing. In Proceedings of the
4th IEEE International Conference on Utility and Cloud Computing (UCC’11). IEEE, 397–402.
DOI:http://dx.doi.org/10.1109/UCC.2011.66

Mina Sedaghat, Francisco Hernández-Rodriguez, and Erik Elmroth. 2014. Autonomic resource allocation for
cloud data centers: A peer to peer approach. In Proceedings of the ACM Cloud and Autonomic Computing
Conference (CAC’14). 131–140. DOI:http://dx.doi.org/10.1145/2494621.2494623

Mehdi Sheikhalishahi, Lucio Grandinetti, Richard M. Wallace, and Jose Luis Vazquez Poletti. 2015. Auto-
nomic resource contention aware scheduling. Software: Practice and Experience 45, 2 (2015), 161–175.
DOI:http://dx.doi.org/10.1002/spe.2223

Matthieu Simonin, Eugen Feller, A. Orgerie, Yvon Jégou, and Christine Morin. 2013. An autonomic
and scalable management system for private clouds. In Proceedings of the 13th IEEE/ACM
International Symposium on Cluster, Cloud and Grid Computing (CCGrid’13). IEEE, 198–199.
DOI:http://dx.doi.org/10.1109/CCGrid.2013.44

Sukhpal Singh and Inderveer Chana. 2012. Cloud based development issues: A methodical anal-
ysis. Int. J. Cloud Comput. Services Sci. (IJ-CLOSER) 2, 1 (2012), 73–84. Retrieved from
http://iaesjournal.com/online/index.php/IJ-CLOSER/article/view/1704.

Sukhpal Singh and Inderveer Chana. 2013a. Consistency verification and quality assurance (CVQA) trace-
ability framework for SaaS. In Proceedings of the IEEE 3rd International on Advance Computing Con-
ference (IACC’13). IEEE, 1–6. DOI:http://dx.doi.org/10.1109/IAdCC.2013.6506805

Sukhpal Singh and Inderveer Chana. 2013b. Introducing agility in cloud based software develop-
ment through ASD. Int. J. u-and e-Service, Sci. Technol. 6, 5 (2013), 191–202. http://dx.doi.org/
10.14257/ijunesst.2013.6.5.17

Sukhpal Singh and Inderveer Chana. 2013c. Advance billing and metering architecture for infrastructure
as a service. Int. J. Cloud Comput. Services Sci. (IJ-CLOSER) 2, 2 (2013), 123–133. Retrieved from
http://iaesjournal.com/online/index.php/IJ-CLOSER/article/view/1960/739.

ACM Computing Surveys, Vol. 48, No. 3, Article 42, Publication date: December 2015.

http://dx.doi.org/10.1145/1851476.1851520
http://dx.doi.org/10.1109/ICICICT.2014.6781244
http://dx.doi.org/10.1109/ICICICT.2014.6781244
http://dx.doi.org/10.14257/ijunesst.2013.6.5.17
http://dx.doi.org/10.14257/ijunesst.2013.6.5.17

QoS-Aware Autonomic Resource Management in Cloud Computing: A Systematic Review 42:45

Sukhpal Singh and Inderveer Chana. 2015a. EARTH: Energy-aware autonomic resource schedul-
ing in cloud computing. J. Intell. Fuzzy Syst. IOS Press, Systems Preprint (2015), 1–20.
DOI:http://dx.doi.org/10.3233/IFS-151866

Sukhpal Singh and Inderveer Chana. 2015b. QoS-aware autonomic cloud computing for ICT.
In Proceedings of the International Conference on Information and Communication Technol-
ogy for Sustainable Development (ICT4SD’15). Springer International Publishing. Retrieved from
http://www.springer.com/in/book/9789811001277#aboutBook.

Sukhpal Singh and Inderveer Chana. 2015c. Q-aware: Quality of service based cloud resource provisioning.
Comput. Elect. Eng. (2015). DOI:http://dx.doi.org/10.1016/j.compeleceng.2015.02.003

Sukhpal Singh and Inderveer Chana. 2015d. QRSF: QoS-aware resource scheduling framework in
cloud computing. J. Supercomput. 71, 1 (2015), 241–292. DOI:http://dx.doi.org/10.1007/s11227-014-
1295-6

Rahul Singh, Upendra Sharma, Emmanuel Cecchet, and Prashant Shenoy. 2010. Autonomic mix-aware
provisioning for non-stationary data center workloads. In Proceedings of the 7th International Conference
on Autonomic Computing. AVC, 21–30. DOI:http://dx.doi.org/10.1145/1809049.1809053

Derek Smith, Qiang Guan, and Song Fu. 2010. An anomaly detection framework for autonomic
management of compute cloud systems. In Proceedings of the 34th Annual Computer Soft-
ware and Applications Conference and Workshops (COMPSACW’10). IEEE, 376–381. DOI:http://dx.
doi.org/10.1109/COMPSACW.2010.72

Bogdan Solomon, Dan Ionescu, Cristian Gadea, Stejarel Veres, and Marin Litoiu. 2013. Self-optimizing
autonomic control of geographically distributed collaboration applications. In Proceedings of the ACM
Cloud and Autonomic Computing Conference. ACM, 1–8. DOI:http://dx.doi.org/10.1145/2494621.2494650

Alain Tchana, Giang S. Tran, Laurent Broto, Noel DePalma, and Daniel Hagimont. 2013. Two levels auto-
nomic resource management in virtualized IaaS. Future Generation Comput. Syst. 29, 6 (2013), 1319–
1332. DOI:http://dx.doi.org/10.1016/j.future.2013.02.002

I. B. M. Tivoli. 2005. Autonomic computing policy language. Tutorial, IBM Corp. (2005). DOI:http://cs.nju.
edu.cn/yangxc/autonomic-computing/ACwpFinal.pdf

Adel N. Toosi, Rodrigo N. Calheiros, and Rajkumar Buyya. 2014. Interconnected cloud comput-
ing environments: Challenges, taxonomy, and survey. ACM Comput. Surv. 47, 1 (2014), 1–47.
DOI:http://dx.doi.org/10.1145/2593512

Hien N. Van, Frederic Dang Tran, and Jean-Marc Menaud. 2009. Autonomic virtual resource management
for service hosting platforms. In Proceedings of the ICSE Workshop on Software Engineering Challenges
of Cloud Computing. IEEE, 1–8. DOI:http://dx.doi.org/10.1109/CLOUD.2009.5071526

Kleber M. M. Vieira, Fernando Schubert, Guilherme A. Geronimo, Rafael de Souza Mendes, and Carlos B.
Westphall. 2014. Autonomic intrusion detection system in cloud computing with big data. In Proceed-
ings of the International Conference on Security and Management (SAM-14). 173–178. Retrieved from
http://www.researchgate.net/publication/266080250.

Hariharasudhan Viswanathan, Eun Kyung Lee, and Dario Pompili. 2011. Self-organizing sensing in-
frastructure for autonomic management of green datacenters. IEEE Network 25, 4 (2011), 34–40.
DOI:http://dx.doi.org/10.1109/MNET.2011.5958006

Delei Weng and Michael A. Bauer. 2010. Using policies to drive autonomic management of virtual systems.
In Proceedings of the International Conference on Network and Service Management (CNSM’10). IEEE,
258–261. DOI:http://dx.doi.org/10.1109/CNSM.2010.5691193

Linlin Wu, Saurabh K. Garg, Steve Versteeg, and Rajkumar Buyya. 2013. SLA-based resource provisioning
for software as a service applications in cloud computing environments. IEEE Trans. Services Comput.
7, 3 (2013), 465–485. DOI:http://dx.doi.org/10.1109/CCGrid.2011.51

Jin Xiao and Raouf Boutaba. 2005. QoS-aware service composition and adaptation in autonomic com-
munication. IEEE J. Selected Areas Commun. 23, 12 (2005), 2344–2360. DOI:http://dx.doi.org/
10.1109/JSAC.2005.857212

Cheng-Zhong Xu, Jia Rao, and Xiangping Bu. 2012. URL: A unified reinforcement learning ap-
proach for autonomic cloud management. J. Parallel Distrib. Comput. 72, 2 (2012), 95–105.
DOI:http://dx.doi.org/10.1016/j.jpdc.2011.10.003

Li D. Xu, Wu He, and Shancang Li. 2014. Internet of things in industries: A survey. IEEE Trans. Industrial
Inform. 10, 4 (2014), 2233–2243. DOI:http://dx.doi.org/10.1109/TII.2014.2300753

Chee S. Yeo, Srikumar Venugopal, Xingchen Chu, and Rajkumar Buyya. 2010. Autonomic metered
pricing for a utility computing service. Future Generation Comput. Syst. 26, 8 (2010), 1368–1380.
DOI:http://dx.doi.org/10.1016/j.future.2009.05.024

Gae-Won You, Seung-Won Hwang, and Navendu Jain. 2013. URSA: Scalable load and power management in
cloud storage systems. Trans. Storage 9, 1 (2013), 1–29. DOI:http://dx.doi.org/10.1145/2435204.2435205

ACM Computing Surveys, Vol. 48, No. 3, Article 42, Publication date: December 2015.

http://dx.doi.org/10.3233/IFS-151866
http://dx.doi.org/10.1109/COMPSACW.2010.72
http://dx.doi.org/10.1109/COMPSACW.2010.72
http://cs.nju.edu.cn/yangxc/autonomic-computing/ACwpFinal.pdf
http://cs.nju.edu.cn/yangxc/autonomic-computing/ACwpFinal.pdf
http://dx.doi.org/10.1109/JSAC.2005.857212
http://dx.doi.org/10.1109/JSAC.2005.857212

42:46 S. Singh and I. Chana

Xindong You, Jian Wan, Xianghua Xu, Congfeng Jiang, Wei Zhang, and Jilin Zhang. 2011. ARAS-M: Au-
tomatic resource allocation strategy based on market mechanism in cloud computing. J. Comput. 6, 7
(2011), 1287–1296. DOI:http://dx.doi.org/10.4304/jcp.6.7.1287-1296

Eric Yuan, Sam Malek, Bradley Schmerl, David Garlan, and Jeff Gennari. 2013. Architecture-based
self-protecting software systems. In Proceedings of the 9th International ACM SIGSOFT Con-
ference on Quality of Software Architectures. ACM, 33–42. DOI:http://dx.doi.org/10.1145/2465478.
2465479

Zhi-Hui Zhan, Xiao-Fang Liu, Yue-Jiao Gong, Jun Zhang, Henry Shu-Hung Chung, and Yun Li. 2015. Cloud
computing resource scheduling and a survey of its evolutionary approaches. ACM Comput. Surv. 47, 4
(2015), 1–33. DOI:http://dx.doi.org/10.1145/2788397

Ziming Zhang, Qiang Guan, and Song Fu. 2012. An adaptive power management framework for auto-
nomic resource configuration in cloud computing infrastructures. In Proceedings of the 31st IEEE
International Performance Computing and Communications Conference (IPCCC’12). IEEE, 51–60.
DOI:http://dx.doi.org/10.1109/PCCC.2012.6407738

Xiaobo Zhou and Chang-Jun Jiang. 2014. Autonomic performance and power control on virtual-
ized servers: Survey, practices, and trends. J. Comput. Sci. Technol. 29, 4 (2014), 631–645.
DOI:http://dx.doi.org/10.1007/s11390-014-1455-4

Dimitrios Zissis and Dimitrios Lekkas. 2012. Addressing cloud computing security issues. Future Generation
Comput. Syst. 28, 3 (2012), 583–592. DOI:http://dx.doi.org/10.1016/j.future.2010.12.006

Received May 2015; revised September 2015; accepted October 2015

ACM Computing Surveys, Vol. 48, No. 3, Article 42, Publication date: December 2015.

