
J Supercomput (2015) 71:241–292
DOI 10.1007/s11227-014-1295-6

QRSF: QoS-aware resource scheduling framework
in cloud computing

Sukhpal Singh · Inderveer Chana

Published online: 16 September 2014
© Springer Science+Business Media New York 2014

Abstract Cloud computing harmonizes and delivers the ability of resource sharing
over different geographical sites. Cloud resource scheduling is a tedious task due to the
problem of finding the best match of resource-workload pair. The efficient management
of dynamic nature of resource can be done with the help of cloud workloads. Till
cloud workload is deliberated as a central capability, the resources cannot be utilized
in an effective way. In literature, very few efficient resource scheduling policies for
energy, cost and time constraint cloud workloads are reported. This paper presents
an efficient cloud workload management framework in which cloud workloads have
been identified, analyzed and clustered through K-means on the basis of weights
assigned and their QoS requirements. Further scheduling has been done based on
different scheduling policies and their corresponding algorithms. The performance of
the proposed algorithms has been evaluated with existing scheduling policies through
CloudSim toolkit. The experimental results show that the proposed framework gives
better results in terms of energy consumption, execution cost and time of different
cloud workloads as compared to existing algorithms.

Keywords Cloud workload · Cloud computing · Resource scheduling · Energy
consumption · IaaS · Quality of service

1 Introduction

Cloud computing enables resources (infrastructure, platform or software) to be offered
as services. These resources are provided using a pay-as-you-use pricing plan [1].

S. Singh (B) · I. Chana
Computer Science and Engineering Department, Thapar University, Patiala, India
e-mail: ssgill@thapar.edu

I. Chana
e-mail: inderveer@thapar.edu

123

242 S. Singh, I. Chana

The services offered to the users consist of set of components, which may be offered
by different providers. To satisfy the request of customers, service must be provided
in accordance with required level of quality of service (QoS). QoS is the capability
to guarantee a definite level of performance based on the parameters described by
consumer [2] and service level agreement (SLA) is an authorized agreement that
describes QoS in written form [3]. One of the major challenges in the current cloud
solutions is to provide the required services according to the QoS level expected by
the user. Cloud service providers want to confirm that sufficient amount of resources
are provisioned to ensure that QoS requirements of cloud service consumers such as
deadline, execution time, energy consumption and budget restrictions are met.

Resource scheduling is defined as the practice of implementing policies and pro-
cedures that improves the efficiency of computing resources in such a way so as to
reduce the execution time and cost, energy consumption and environmental impact
of their execution. However, executing too many workloads on a single resource will
cause workloads to interfere with each other and result in degraded and unpredictable
performance which, in turn, discourages the users [4,5]. The mapping of workloads to
appropriate resources for execution in cloud environment is a complex task and it can
be easily solved using machine learning techniques. Through this technique, the clas-
sification of workloads based on their QoS requirements can be done. Dispersion, het-
erogeneity and uncertainty of resources bring challenges to resource allocation, which
cannot be satisfied with traditional resource allocation policies in cloud [6]. Thus, there
is a need to make cloud services and cloud-oriented applications efficient by taking
care of these properties of the cloud environment. Resource scheduling aims to allo-
cate appropriate resources at the right time to the right workloads, so that applications
can utilize the resources effectively which lead to maximization of scaling advantages.
The amount of resources should be minimum for a workload to maintain a desirable
level of QoS, or maximize throughput (or minimize workload completion time) of a
workload. To address this problem, efficient solutions should be developed. To design
a successful IaaS, initially understand the cloud workload (client-oriented, server-
oriented and mobile-oriented) thoroughly based on QoS requirements [7]. Based on
this, cloud consumer should design their applications which lead to maximization of
the scaling advantage. With the help of this, not only dynamic infrastructure scaling
can be achieved but also it will minimize the response time, execution cost, and energy
consumption of elastic demand and maximize the throughput of requests [2]. A distinct
workload (or a whole application) used by a set of consumers and a smaller facility
may be used in different environments. The different applications have different set of
QoS requirements and characteristics. Some clouds are natural fits for certain classes
of workloads (i.e. web applications) whereas for another type of workloads (i.e. batch),
other cloud services (AWS) are more necessary. It is difficult to prepare an IT resource
to fulfill its processing desires. IT resources may be over-utilized or under-utilized
depending on demand. The aim of workload analysis is to look at different aspects or
characteristics of an enterprise application to determine the feasibility of moving or
porting the application in the cloud.

The motivation of our research work emerges from the challenge of finding the best
resource-workload pair according to customer requirements. In real-life situations,
there are three main QoS constraints that need to be considered for efficient utilization

123

QoS-aware resource scheduling framework 243

of resources: (1) minimizing the execution cost of resources, (2) minimizing the exe-
cution time of workloads, (3) reducing the energy consumption and at the same time
meeting the cloud workload deadline. The main aim of this research work is to: (1)
propose cloud workload management framework, (2) clustering of workloads through
machine learning techniques, (3) Propose resource scheduling policies [compromised
cost-time based (CCTB) scheduling policy, time based (TB) scheduling policy, cost
based (CB) scheduling policy and bargaining based (BB) scheduling policy], (4) opti-
mize the execution cost and time for resource scheduling and simultaneously reduce
the energy consumption, (5) perform evaluation with existing scheduling algorithms.

Paper is structured as follows: Sect. 2 presents related work and contributions. Cloud
workload management framework (CWMF) with problem statement and objectives
is presented in Sect. 3. Section 4 describes the experimental setup used for perfor-
mance evaluation and results. A comprehensive comparison of CWMF with existing
algorithms and experimental analysis of the performance of the proposed framework
have been also described. Section 5 concludes the paper and Sect. 6 presents future
directions.

2 Background and related work

Scheduling of workloads in a cloud environment is challenging due to dynamic and
heterogeneous resources spread over geographical area. Most of the reported research
deals with cloud workload management systems in a cloud computing environment
on the basis of resource requirements.

2.1 Cloud workload analysis

Cloud workload is an abstraction of work of that instance or set of instances executing
on the appropriate resources with different QoS requirements submitted by cloud con-
sumer as a type of application. For example: running a web service or being a Hadoop
data node are valid workloads. A workload is a self-governing services or group of
code that can be implemented; workload does not depend on outside demands [8,9].
Nevertheless, most existing works have a slightly different emphasis or use a differ-
ent method [10]. Different from these works, which emphasis on workload modeling
at distinct server or general data center level, this study emphases on knowing the
interrelated workload patterns within clusters of servers that result from application
dependencies [10]. Moreover linked to this analysis are the works on capacity manage-
ment and virtual server placement, which usually employ some workload modeling
and forecast methods [11].

Cirne et al. [8] presented supercomputer workload model which addresses two
aspects of job: probability of cancelation of job and requested time. In this model, pat-
tern of job arrival and correlation between short execution time and poor request accu-
racy has been identified and considers only homogenous workloads. Arlitt et al. [12]
identified, analyzed and classified the web servers based workloads. In this approach,
different invariants of server based workloads have been identified to improve web
server performance. Cherkasova et al. [10] conducted an analysis on broadcasting

123

244 S. Singh, I. Chana

servers and created a set of properties exclusive for enterprise broadcasting server’s
workloads. In this paper, a media server log analysis tool (MediaMetrics) has been
proposed and defined metric rate of change to classify the workloads.

Gmach et al. [9] presented trace-based approach for capacity management and con-
sider capacity planning and performance modeling to classify the workload demand
patterns. Future demands based on the patterns have been predicted through the gen-
eration of synthetic workloads and analyzed the workloads to identify the nature of
workloads. Bobroff et al. [13] proposed regression model based a dynamic server
migration and consolidation technique to predict workload deviations, to dynamically
place virtual machines (VMs). This approach decreases the amount of physical capac-
ity necessary to provision a specified rate of SLA violations for a given workload and
produced better results than static consolidation technique. Verma et al. [14] presented
the first thorough investigation of an enterprise server workload from the viewpoint of
finding features for consolidation. They focused on consolidating servers using asso-
ciation or peak cluster-based assignment when the correlation between applications
is not considered. Rolia [11] described an automatic quartermaster capacity manager
service for managing virtualization-based resource pools. A trace-based workload
predicting technique was used for capacity management to improve performance and
optimize search method.

These methods answer on the statistics (e.g., percentiles, peaks, etc.) of distinct
workload time series to forecast upcoming capacity demand. In comparison, some
other methods discover inter-server relationships and try to forecast workload levels at
finer granularity. Khan et al. [15] described data traces acquired from a real data center
to progress such abilities. Initially, they have searched for repeatable workload patterns
by discovering cross-server performance relationships resulted from the dependencies
among applications running on dissimilar servers. Chen et al. [16] inspected the per-
formance aspects of virtualization standard based on the VMmark model which adapts
the identical workloads on single server. Bossche et al. [17] studied this optimization
problem in a multi-provider hybrid cloud setting with deadline-constrained and pre-
emptible but non-provider migratable workloads that are categorized by memory, CPU
and data transmission desires.

Xiong et al. [18] discussed two challenges: intrinsic optimization encounter between
cost of resources and SLA agreement, and fluctuating demands of multiple tiers. They
addressed these two open issues through the grouping of the resource controllers
on both application and container levels to decrease the total amount of resources
while meeting the E2E performance requirements for the workload. Tsakalozos
et al. [19] suggested Nefeli, a virtual infrastructure gateway that is able to efficiently
control different cloud workloads. This technique evades bottlenecks within the cloud
through the recognition of feasible VM deployment mappings and presents a method
to migrate VMs as desired to adjust to varying performance needs. Bossche et al. [20],
handled this limitation by suggesting a set of procedures to cost efficiently schedule
deadline-constrained bag-of-tasks applications on both public cloud providers and
private infrastructure. Kousiouris et al. [21] predicted the influence of a number of
critical factors on the performance of VMs. The critical factors considered in this
research are allocation percentages, real-time scheduling decisions and migration of
VMs.

123

QoS-aware resource scheduling framework 245

Mahambre et al. [22] studied workload executing in infrastructure as a service (IaaS)
cloud and classify into patterns, based on their behavioral features. They defined
various kinds of behavioral patterns and outlined statistical methods to be used in
defining these patterns. Here existing work of workloads in the context of cloud has
been presented. They have not considered heterogeneous workloads. To develop an
efficient resource scheduling framework, there is need to identify the heterogeneous
cloud workloads and their QoS requirements.

2.2 Resource scheduling

Cloud computing is on demand as it offers dynamic flexible resource allocation for
reliable and guaranteed services in pay according to use. Many cloud consumers can
demand number of cloud services concurrently. Subsequently, there is a need to pro-
vide all the resources to request cloud consumer in a well-organized way to fulfill their
requirements. Several optimized frameworks such as heterogeneous earliest time first
(HEFT), ant colony optimization (ACO) based framework, resource aware scheduling
algorithm (RASA) based framework, particle swarm optimization (PSO) based frame-
work, optimal workflow based scheduling (OWS) framework among others have been
proposed [23–27].

In a QoS constraint-based framework of cloud computing, QoS requirements are
considered without violation of SLA. Varalakshmi et al. [26] described an OWS frame-
work to discover a solution that tries to meet the user-desired QoS constraints, i.e. exe-
cution time. This paper shows slight improvement in resource utilization is attained.
But it does not consider cost and energy as QoS parameters. Wang et al. [27] presented
an ACO based job scheduling framework, which adapts to dynamic characteristics
of cloud computing and incorporates particular benefits of ACO in NP-hard prob-
lems. This approach reduced only job completion time based on pheromone. Xu et al.
[28] presented a multiple QoS constrained scheduling framework for multiple work-
flows with different QoS requirements. This framework considered QoS requirement
execution time only and not considered QoS requirements of resource consumers.
Ambike et al. [29] proposed a non-preemptive priority queuing model based schedul-
ing framework in which cloud user performs the activities and the QoS requirements
are achieved. QoS based scheduling framework tries to negotiate with quality attributes
and maximizes the performance and minimizes the execution cost by meeting the user
requirements without considering energy consumption.

Yu et al. [30] proposed a cost-based workflow scheduling framework that reduces
the only execution cost, however, meeting the deadline for delivering results. It can
also adjust to the delays of service accomplishments by rescheduling unexecuted
workloads. Sakellariou et al. [31] suggested a simple model for workflow applications
that modeled as directed acyclic graph (DAG) and that permit to schedule the nodes
of DAG onto resources in a method that fulfills a budget constraint and is optimized
for overall time. Topcuoglu et al. [24] presented the HEFT framework to discover
the average execution time of each workload and also the average communication
time among the resources of two workloads. Then workloads in the workflow are
well-ordered on a rank function. The workload with higher rank value is given higher

123

246 S. Singh, I. Chana

priority. In the resource selection stage workloads are scheduled in priorities and each
workload is allocated to the resource that complete the workload at the earliest time.
They did not design framework to reduce cost and time.

El-kenawy et al. [25] proposed a RASA-based scheduling framework to select
the jobs based on execution time instead of overall completion time. This technique
shows achieving schedules with comparable lower execution time as compared to
original max–min and RASA by considering only provider’s benefit. Selvarani et al.
[32] proposed a cost-based scheduling framework that divides all cloud consumer jobs
depending on importance of every job into three different lists. The resource cost and
computation performance have been measured and computation/communication ratio
is improved. Dakshayini et al. [33] offered a priority-based scheduling framework that
aims at serving the user requests satisfying the QoS, optimizing the time the service-
request spends in the queue and achieving the high throughput of the cloud by making
an efficient provision of cloud resources. They did not consider execution time and
cost for independent parallel workload scheduling.

Ghanbari et al. [34] proposed a multi-criteria and multi-decision priority driven-
based scheduling. The above two approaches generally devote a lot of time on fixing
the priorities, so they are not appropriate for scheduling of heterogeneous cloud work-
loads. Wu et al. [35] suggested a market-oriented hierarchical scheduling approach
which contains both service level scheduling and workload level scheduling. The
service level scheduling deals with the task to service assignment and the work-
load level scheduling deals with optimization of the task to VM assignment in local
cloud data centers. This framework was not considered cost and time as QoS para-
meters. Pandey et al. [23] introduced a PSO-based heuristic framework to schedule
the applications to cloud resources that proceeds both computation and data trans-
mission cost. It is used for workflow applications by changing its computation and
communication costs. The assessment results show that PSO can reduce the cost and
good sharing of workload onto resources. They did not consider execution time of
workloads.

Ghorbannia et al. [36] proposed a trustworthy scheduling framework in cloud
computing, wherein main problem is divided into sub problems (jobs). The request
and acknowledge time are computed independently in the form of a shared job to
make balance. Moschakis et al. [37] proposed a job migration and starvation han-
dling based gang scheduling framework in which parallel jobs are scheduled. Ini-
tially, the system includes no VM, but depending on the computational needs of
the jobs being serviced new VMs can be leased and later released dynamically.
But it considers only cost as QoS parameter. Zhan et al. [38] presents PSO-based
adaptive PSO framework to fulfill effective resource allocation in cloud environ-
ment at run time to improve the search efficiency and convergence speed but it does
not considered cost and execution time. Liu et al. [39] presented workflow based
compromised-time-cost scheduling framework which considers only execution time
and cost simultaneously but did not consider energy consumption of resources. Verma
et al. [40] presented deadline and budget distribution-based cost-time optimization
(DBD-CTO) workflow scheduling framework that minimizes execution cost while
meeting deadline without considering energy consumption and heterogeneous cloud
workloads.

123

QoS-aware resource scheduling framework 247

All the above research works have presented scheduling frameworks in cloud com-
puting without considering the execution time, cost and energy as QoS parameter for
cloud environment and concept of rescheduling of cloud workloads to reduce num-
ber of deadlines missed. None of the existing work considers heterogeneous cloud
workloads and their mapping to the appropriate resources based on clustering and
four different types of resource scheduling policies simultaneously in a single cloud
framework. Due to lack of negotiation between user and provider and use of conflicting
resource scheduling policies, the communication time and cost can be increased. But
when we use same resource scheduling policy then communication time and cost can
be reduced and complexity can also be decreased. In addition, our novel cloud work-
load management framework needs to consider the basic features of cloud computing
to execute the heterogeneous cloud workloads by negotiating makespan and budget
with energy consumption which is not considered in other existing frameworks and
the evaluation is performed by existing scheduling algorithms.

2.3 Our contributions

Our contribution in this research paper is twofold. Firstly, we have presented CWMF
in which cloud workload analyzer (CWA) unit has been incorporated. CWA unit is
responsible for identification, analysis and clustering of both homogenous and hetero-
geneous cloud workloads. Weights have been assigned on the basis of QoS require-
ments for each workload. The clustering of cloud workloads is done through K-means
clustering algorithm as discussed in Sect. 3.5.3.2. Secondly, four resource schedul-
ing policies [CCTB scheduling policy, time-based (TB) scheduling policy, cost-based
(CB) scheduling policy and bargaining-based (BB) scheduling policy] are proposed
based on different criteria. Mapping and execution of cloud workloads to the corre-
sponding resources are done using these resource scheduling policies. We have con-
sidered execution time and cost of workload’s execution as cloud consumer and cloud
provider’s functions, respectively. Decision tree-based scheduling criteria is used to
select the scheduling policy based on the cloud consumer requirements. The proposed
framework focuses on how to map the cloud workload to reduce cost, time and overall
energy consumption using clustering. Finally, we have validated our proposed frame-
work using CloudSim [41]. The main contribution of this paper is the development of
CWMF that enables the mapping and execution of cloud workload according to cloud
consumer requirements.

3 Cloud workload management framework

In cloud computing, resource scheduling is core of resource management system. It
essentially indicates mapping of cloud workloads to the appropriate resources from the
available resource pool. This process searches the best resource and maps with cloud
workload based on consumer requirements. Process of resource scheduling comprises
of four steps. In first step, cloud workloads are analyzed and clustered based on their
requirements. In second step, identify the required set of resources from resource
pool. In third step, map the cloud workload with appropriate resources based on QoS

123

248 S. Singh, I. Chana

Cloud Workload Management Portal

Bulk of Workloads

Workload Management System
Cloud Workload Analyzer

Policy Selector

Scheduler

Resource
Information

Database

Workload Monitor DispatcherEnergy Calculator

R
esource Pool

Cloud Consumer

Fig. 1 Cloud workload management framework

requirements specified by user. In final step, schedule the workloads with user-specified
resource scheduling policy therefore further guaranteeing near optimal satisfaction of
QoS requirements. Need of optimized resource scheduling in IaaS can be achieved
using the proposed framework. For example, assume that a customer wants to purchase
some item from grocery store, then salesman would ask the range in terms of budget,
then salesman will display the items accordingly. Based on the money they want to
spend and other requirements and constraints, select the particular item among all the
displayed items. The proposed CWMF is shown in Fig. 1.

Flowchart shown in Fig. 2 depicts the flow of cloud workloads from CWMF to
resource scheduling. The framework executes the requests as follows:

• In CWMF, first of all cloud consumer tries to execute the workloads through the
cloud workload management portal (CWMP).

• After that, the task of cloud consumer’s authorization and authentication is per-
formed.

• After authentication, workload management system (WMS) asks to submit the
cloud consumer requirements in the form of workload details, and authenticated

123

QoS-aware resource scheduling framework 249

[No]

[YES]

[No]

[Yes]

Workload Information

Workload Analysis

Choose Scheduling Policy

Assign Resources and Execute Cloud Workload

Check Current Workload

While (RR > PR)

Rescheduling

Ask for more Resources

If (Policy == Time/Urgency)

or

Change Policy

Resources Automatically Scaled Back

Unneeded Resources Release to Pool

Ready for New Allocation

Cloud
Workload
Completed

Resource Pool

Reserve
Resource Pool

Policy
Information

Fig. 2 Flowchart of cloud workload management framework

cloud consumer fills it and submits the request for the availability of particular
resource with proper specification for the execution of their workload.

• WMS takes the information from the appropriate workload after analyzing the
various workload details which cloud consumer demanded.

• WMS analyzes the workload and clusters them through K-means clustering algo-
rithm.

• Decision tree is used to select the particular scheduling policy based on consumer
workload details.

• WMS then collects the information available resources from resource information
database (RID). RID contains details of all the resources available in resource pool
and reserve resource pool.

• Based on cloud consumer details CWMF assigns resources and executes cloud
workloads.

123

250 S. Singh, I. Chana

• During execution of a particular cloud workload, the CWMF will check the current
workload. If the value of required resources (RR) is more than the value of provided
resources (PR) then it will check the scheduling policy (See Sect. 3.5.5) in the
following ways:

– If the scheduling policy is time-based (TB) then it will reschedule the allocated
resources to the cloud workloads, otherwise allocate the resources to new cloud
workloads from reserve resource pool.

– If the scheduling policy is cost-based (CB) then cloud workload management
framework will ask to change the policy to execute cloud workloads and pay
the amount as required.

– If the scheduling policy is bargaining-based (BB) then the cloud workloads
will be executed by negotiation or mutual agreement between cloud consumer
and cloud provider.

– If the scheduling policy is CCTB, cloud provider will minimize cost and execu-
tion time. For successful execution of a cloud workload, the actual energy con-
sumption (ECloud) should also be less than threshold energy value (EThreshold).

• After successful execution of cloud workloads, cloud workload management
framework releases the free resources to resource pool and CWMF is ready for
execution of new cloud workloads.

3.1 Objectives and commitments

The intent of CWMF is to ensure that the framework will map and execute the cloud
workloads with QoS and user requirements. The following are main objectives of this
work for better matchmaking and efficient scheduling:

(a) To clearly recognize the present and prospective upcoming requirements and
expectations of the cloud customer.

(b) To analyze the cloud workloads and cluster them using appropriate machine learn-
ing algorithm.

(c) To reduce execution time and cost resulting in reduction of overall energy con-
sumption.

(d) To improve user satisfaction by meeting customer requirements.

3.2 Framework assumptions

We have used some terms in this section: Price denotes the actual cost spent for
execution of workload, Urgency denotes the requirement when user wants to execute
their workload immediately in minimum time without reservation, Stable denotes that
complete execution of workload from start to end without interruption and Price List
denotes the set of prices of different resources based on user requirement. The proposed
framework resulting from the following assumptions of cloud customer needs:

• Cloud consumer wants “price” to be less and under budget. A regular classification
of price here is the quantity of expenses; total payment or cost incurred to finish
all of the workloads under consideration.

123

QoS-aware resource scheduling framework 251

• Cloud consumer wants “time” for completing all of the workloads to be less. If
the dispatched workloads of a bulk of workloads (BoW) among a large number of
resources, the latest completion time among all resources is the makespan of that
workload and this completion time must be decreased as much as possible.

• Reducing the dynamic energy consumption by lowering the supply voltage at the
cost of performance degradation. Develop resource management and scheduling
algorithm that aim at minimizing the energy consumption and at the same time
meet the cloud workload deadline too.

• Cloud customer prefers a “stable” workload assignment. Minimize unnecessary
resource thrashing to minimize communication overheads.

• Cloud customer prefers an “urgency” workload assignment. Urgency refers to the
“minimize” execution time of a particular assignment.

• This framework assumes a single IaaS provider with uniform price list of the
resources being considered.

• If there is “urgency” then there is no need to move the workload into workload
queue, processed directly using reserve resource pool.

3.3 Problem statement

Cloud resource scheduling is a tedious task due to the problem of finding the best
match of resource-workload pair based on the user QoS requirements. The goal of
cloud workload analyzer is to categorize the workloads and the goal of resource sched-
uler is to map and schedule the workloads effectively and efficiently. The resources
and cloud workloads can leave and join the cloud dynamically. Cloud resources are
heterogeneous and dynamic in nature. In this work, independent cloud workloads have
been considered to handle the realistic scenarios as there are many scenarios in which
the need of scheduling cloud workloads arises. Firstly, this problem is suitable to
cloud systems because of the nature of cloud customers, who submit cloud workloads
in an independent manner to the system. Secondly, cloud systems are most useful for
massive parallel processing, in which large amounts of data are processed indepen-
dently. In this work, the scheduling of workloads has been considered from both the
cloud customer and cloud provider’s point of view. The user wants to minimize the
cost, whereas the cloud provider wants to minimize the execution time and energy
consumption. In this problem, the most popular and extensively studied optimization
criteria, i.e. the minimization of the execution time has been considered. Execution
time is used to indicate the general productivity of the cloud systems. Smaller values
of execution time and energy consumption indicate that the scheduler is planning the
cloud workloads in an efficient manner. Cost is another optimization criterion, which
refers to the total cost of the cloud workload execution on a particular resource. The
problem has been derived to get an optimal solution.

The problem can be expressed as: to consider this problem, a set of independent
cloud workloads {w1, w2, w3, . . . , wm} to map on a set of heterogeneous and dynamic
resources {r1, r2, r3, . . . , rn} has been taken. R = {rk1 ≤ k ≤ n} is the collection of
resources and n is the total number of resources. w = {wi |1 ≤ i ≤ m} is the collection
of cloud workloads and m is the total number of cloud workloads. The estimated time to

123

252 S. Singh, I. Chana

compute the value of each cloud workload on each resource is assumed to be given by
the consumer-supplied information, experimental data, cloud workload profiling and
analytical benchmarking. For cloud workload management framework, the following
constraints have been considered:

1. Each cloud workload to be scheduled for application’s execution has a unique
workload id.

2. Cloud workloads are independent.
3. Arrival of cloud workloads for execution of application is random and cloud work-

loads are placed in a queue of unscheduled cloud workloads.
4. The processing speed of the resources is measured in multiple instructions per

second (MIPS) as per the standard performance evaluation corporation (SPEC)
benchmark.

5. The processing requirement of a cloud workload is measured in million instructions
(MIs).

6. Execution time for every cloud workload on a resource is obtained from objective
function.

The list of symbols used in this research paper is described below in Table 1:

3.4 Objective function

In cloud computing, provider wants to minimize the execution time while user wants
to minimize the cost for cloud workload. The goal of an objective function is to
decrease the sum of product of cost and time expended for finishing all n workloads
of a given BoW. This objective function (min z) successfully captures the compromise
between execution cost and execution time as specified in Eq. (1). Further formally,
the workload assignment problem with the cost and time function of each resource
can be generally formulated as follows:

min z =
n∑

m=1

(Et)m × (BH)m (1)

where, m is a current workload that is being executed, Et is execution time and BH is
budgeted per hour. The goal of cloud provider is to maximize the resource utilization
and minimize the actual energy consumption.

The cloud workload will be executed only when the actual energy consumption
(ECloud) is less than the threshold energy value (EThreshold). The energy model is
devised on the basis that processor utilization has a linear relationship with energy
ingestion. For a particular cloud workload, the information on its execution time and
processor utilization is sufficient to measure the energy consumption for that cloud
workload [42]. For a resource rt at given time t , the utilization Ut is defined as (Eq.
2):

Ut =
c∑

b=1

Ut,b (2)

123

QoS-aware resource scheduling framework 253

Table 1 List of symbols

Notation Description

Execution time (Et) Time required to execute the workload completely and
measured in seconds

Budgeted per hour (BH) The amount of cost can spend in one hour for the execution
of workload and measured in dollars ($)

Actual energy consumption (ECloud) The energy consumed for the execution of workload and
measured in kilo watt hour (KWh)

Threshold energy value (EThreshold) The maximum value of energy consumption allowed for the
execution of workload

Communication time (Ct) Time required for communication between workload and
resource during mapping and measured in seconds

Desired deadline (Wd) The maximum time limit allowed to execute the workload
as described by user and measured in seconds

Current time (Curt) It denotes the present time and measured in seconds

Communication cost (Cc) Amount of cost required for communication between
workload and resource during mapping and measured in
dollars ($)

Minimum cost (Cmin) Minimum cost used to execute the workload and measured
in dollars ($)

Estimated budget (BE) The maximum value of cost that user wants to spend and
measured in dollars ($)

Resource price (Pr) It denotes the price of single resource and measured in
dollars ($)

Resource available (RA) Number of resources available in resource pool

Workload pending (Wp) Number of workloads pending for execution

Available budget (BA) Budget available for the execution of a particular workload
and measured in dollars ($)

Estimated completion time (ECT) The approximate time used to complete the successful
execution of workload and measured in seconds

Next schedule time (NST) It denotes the next schedule of execution and measured in
seconds

Total expected completion time (TECT) The actual time required to complete the successful
execution of workload. It is sum of execution time and
communication time and measured in seconds

min z It denotes the sum of product of cost and time expended for
finishing all n workloads of a given BoW

Total expected cost (TEC) The actual cost required to complete the successful
execution of workload. It is sum of minimum cost of
execution and communication cost and measured in
dollars ($)

Time difference (Td) It denotes the difference between the deadline time and total
expected completion time and measured in seconds

Deadline time (Dt) It is the difference between desired deadline and current
time and measured in seconds

Deadline urgency (Du) It specifies cloud customer urgency to get workload (s)
completed

123

254 S. Singh, I. Chana

Fig. 3 Dynamic energy consumption

where c is the number of cloud workloads running at time t and Ut,b is the resource
usage of a cloud workload wt [42]. The actual energy consumption ECloud of a resource
rt at given time t is defined as (Eq. 3):

ECloud = (PCmax − PCmin) × Ua + PCmin (3)

where PCmax is the power consumption at the peak load (or 100 % utilization) and
PCmin is the minimum power consumption in the active mode (or as low as 1 %
utilization). Reducing the dynamic energy consumption by lowering the supply voltage
at the cost of performance degradation. The supply voltage can be reduced when
the more number of resources are in idle state. Suppose the deadline for workload
execution is 25 ms and more number of resources are available than required, then
execution can complete in 25 ms (supply voltage = 2.0 V) using lower number of
resources rather than using more number of resources to complete it within 10 ms
(supply voltage = 5.0 V). In idle state performance is degraded but it will not effect on
the execution of workload and user satisfaction as shown in Fig. 3. Through this way,
the workload can be executed within deadline with minimum energy consumption.

3.5 Framework units

The units of CWMF have been described as follows:

3.5.1 Cloud workload management portal

The cloud workload details are gathered through the CWMP from cloud consumer.
Web browser acts as an interface for both consumer and provider. The cloud provider
generates the workload schedule based on the workloads’ details specified by the user.
The workload generated by cloud provider is based on the four resource scheduling
polices, to allocate the resources to the cloud workloads efficiently. Use case shown
in Fig. 4 describes the core of the actual requirements of the CWMP.

3.5.2 Bulk of workloads

The number of cloud workloads submitted by the cloud user is processed in the queue.
Based on the details given by user, the resources are assigned to the cloud workloads
for their execution.

123

QoS-aware resource scheduling framework 255

Fig. 4 Use case diagram of CWMP

3.5.3 Cloud workload analyzer

The aim of cloud workload analyzer is to look at different characteristics of a
cloud workload to determine the feasibility of porting the application in the cloud.
The different cloud workloads have different set of requirements and characteris-
tics. This analysis also provides input to execution method, cloud service choice
and a preliminary business worth valuation. The types of workload that have been
identified during workload analysis [43], are websites, technological computing,
endeavour software, performance testing, online transaction processing, E-Com, cen-
tral financial services, storage and backup services, production applications, soft-
ware/project development and testing, graphics oriented, critical internet applica-
tions and mobile computing services [15,16,18,19,23,44,45]. After identification
and analysis of workloads, they are classified on the basis of specific features in
terms of security needs, network needs, variability of load, backup services, net-
work bandwidth needs, computing capacity and other QoS metrics. Based on the
QoS requirements of workload, Table 2 summarizes the classifications of cloud
workloads.

123

256 S. Singh, I. Chana

Table 2 Classification of cloud workloads

Group Workloads

Server oriented Websites, technological computing, endeavour software, performance
testing, online transaction processing, E-Com, central financial
services, storage and backup services

Client oriented Production applications, software/project development and testing,
graphics oriented, critical internet applications

Mobile oriented Mobile computing services

To schedule the resources efficiently, the clustering of cloud workloads is done. For
clustering of cloud workload, assign weights to different quality attributes based on
the importance for particular cloud workload.

3.5.3.1 Assign weights to quality attributes In this paper, the data (average of
weights) collected from existing research papers from reputed journals are used
because the researchers assign weights to quality attributes with respect to context in
which that quality attribute is used. The range of weight scale has been assumed from
1 (minimum) to 5 (maximum). The weights are assigned according to the importance
of a requirement for a particular cloud workload. If any quality attribute is not impor-
tant for a particular cloud workload then zero or not available (NA) is assigned. These
attributes are almost the same according to the international research. The weights
for various quality attributes can be assigned from different types of research papers.
Further, the average of every attribute has been taken and that average is the approx-
imate weight (percentage) of that quality attributes [46] as specified in Eq. (4). The
consequence of collected data is used by the following formula to calculate quality
attributes weight:

W (i, j) = 1

N f × Mv

×
N f∑

k=1

Rk × 100 (4)

where in W (i, j), i is cloud workload and j is quality attribute (QoS requirement) of
that workload, N f is number of research papers used to collect data, Mv is maximum
value for a quality attribute and Rk is response for an attribute; the value of W (i, j) will
be in the range 0–100 %. An analysis has been conducted to acquire the data from 15
research papers of cloud computing from reputed journals about cloud workloads with
the objective to know about how to assign the weights to the quality attributes according
to significance [47–61]. After getting the responses, an industry standard baseline and
acceptable weights to the quality attributes have been defined. The conversion metric
is used to assign the values (minimum = 1 and maximum = 5) [62] corresponding to
the percentage as shown in Table 3.

This information determines the authenticity of the data that is received from dif-
ferent research papers. The result of the data analysis is as follows; a total 15 research
papers of different contexts have been studied and maximum possible value for an

123

QoS-aware resource scheduling framework 257

Table 3 Conversion metric
Approximate weight (%) Weight

0–20 1

20–40 2

40–60 3

60–80 4

80–100 5

attribute is 5. For example calculating the average of “usability” quality attribute by
putting the values in Eq. (4) is as following:

N f = 12, i = online transaction processing and j= usability, Mv = 5 and sum
of the responses

∑12
k=1 Rk = 32

W (i, j) = 1

12 × 5
× 32 × 100 = 53.33

For W (i, j) = 53.33, the average weight is assigned for usability is 3 using Table 3.
Through this the average weights for every quality attribute have been calculated.

3.5.3.2 Cloud workload based K-means algorithm for clustering of workloads As
workload demands vary widely and are quite fluctuating simple static resource pro-
visioning results in over and under provisioning. cloud workload K-means clustering
algorithm is non-hierarchical method that initially takes the number of workloads of
the population [workload set (W)] equals to the final necessary number of clusters. The
actual essential number of clusters is selected such that the workloads are mutually
farthest apart based on QoS requirements in this step. Next, it examines each work-
load in the population and assigns it to one of the clusters depending on the minimum
distance. The cluster centroid’s (C) position is recalculated every time a workload is
added to the cluster and this continues until all the workloads are grouped into the
final required number of clusters (Cn) [63]. The algorithm used for clustering of cloud
workload is shown in Fig. 5. Cloud workload K-means clustering algorithm calculates
the distance between each workloads and select that pair which shows the minimum
distance and remove it from actual workload set (W). Then take one workload from
workload set (W = {W1W2 . . . Wt }) and calculate the distance between selected work-
load and standard workload from workload set (W) and add with that cluster which
shows the minimum distance. Repeat this process till threshold value is achieved. If
number of value is less than k then again calculate the distance between each workload
from the rest workload set (W) and repeat that process till k cluster is formed.

3.5.3.3 Weight assignment for cloud workloads The range of weight scale has been
assumed from 1 (minimum) to 5 (maximum). The weights are assigned according to
the importance of a requirement for a particular cloud workload as shown in Table 4.

Abbreviations for the workload and their corresponding requirements have been
presented in Table 5.

Based on the importance of a requirement for a particular cloud workload the data
values have been assigned as shown in Table 6.

123

258 S. Singh, I. Chana

Fig. 5 K-Means algorithm for clustering of cloud workloads

Let the four seeds [64] be the four workloads as shown in Table 7.
Now compute the distance using the four values (weights assigned) and using the

sum of differences for simplicity (i.e. using the K-median method [65]). The distance
values for all the cloud workloads are given in Table 8, wherein columns 6, 7, 8
and 9 give the four distances from four seeds, respectively. Based on these distances
workload is allocated to the nearest cluster [66] and the result of first iteration as shown
in Table 8.

First iteration leads to two each workload in first and second cluster, three in third
cluster and six in fourth cluster. Table 9 compares [67] the cluster means of cluster
found in Table 8 with the original seeds (s1, s2, s3, s4).

Use the new cluster means to recompute the distance of each object to each of the
means, again allocating each cloud workload to the adjacent cluster. Table 10 shows
the second iteration.

The number of workloads in all the four clusters is again same. A more careful look
shows that the clusters have not changed at all. The cluster membership [64] is shown
in Table 11.

3.5.4 Resource information database

The resource details include the number of CPU use, size of memory, cost of resources,
type of resources and number of resources. All the common resources are stored in
resource pool and reserve pool contains some reserve resources.

123

QoS-aware resource scheduling framework 259

Table 4 Workloads with their requirements and weights

Id Workload QoS requirements Weights assigned

W1 Web sites Reliable storage 3

High network bandwidth 3

High availability 5

W2 Technological computing Computing capacity 5

W3 Endeavour software Security 5

High availability 5

Customer confidence level 3

Correctness 3

W4 Performance testing Computing capacity 5

W5 Online transaction processing Security 5

High availability, 3

Internet accessibility 5

Usability 3

W6 E-Com Variable computing load 5

Customizability 3

W7 Central financial services Security 5

High availability 3

Changeability 1

Integrity 5

W8 Storage and backup services Reliability 5

Persistence 3

W9 Productivity applications Network bandwidth 2

Latency 3

Data backup 4

Security 5

W10 Software/project development
and testing

User self-service rate 4

Flexibility 4

Creative group of
infrastructure services

1

Testing time 5

W11 Graphics oriented Network bandwidth 3

Latency 3

Data backup 5

Visibility 4

W12 Critical internet applications High availability 5

Serviceability 4

Usability 3

W13 Mobile computing services High availability 3

Reliability 5

Portability 2

123

260 S. Singh, I. Chana

Table 5 Abbreviations of
workload requirements Network bandwidth R1 Variable computing load R13

Integrity R2 User self service rate R14

Security R3 Reliable storage R15

Usability R4 Database backup R16

Reliability R5 Correctness R17

Availability R6 Visibility R18

Changeability R7 Serviceability R19

Latency R8 Computing capacity R20

Customer confidence level R9 Flexibility R21

Portability R10 Internet accessibility R22

Customizability R11 Persistence R23

Testing time R12 Creative group of
infrastructure services

R24

Table 6 Data values for
workloads

Workloads Requirements Value 1 Value 2 Value 3 Value 4

W1 R15, R1, R6 3 3 5 0

W2 R20 5 0 0 0

W3 R3, R6, R9, R17 5 5 3 3

W4 R20 5 0 0 0

W5 R3, R6, R22, R4 5 3 5 3

W6 R13, R11 5 3 0 0

W7 R3, R6, R7, R2 5 3 1 5

W8 R5, R23 5 3 0 0

W9 R16, R1, R3, R8 2 3 4 5

W10 R14, R21, R24, R12 4 4 1 5

W11 R1, R8, R16, R18 3 3 5 4

W12 R6, R19, R4 5 4 3 0

W13 R5, R6, R10 3 5 2 0

Table 7 The four seeds for
given workloads

Seed Value 1 (V1) Value 2 (V2) Value 3 (V3) Value 4 (V4)

s1 5 0 0 0

s2 5 3 0 0

s3 3 3 5 0

s4 5 3 5 3

3.5.5 Policy selector

Four resource scheduling policies [CCTB scheduling policy, time-based (TB) schedul-
ing policy, cost-based (CB) scheduling policy and bargaining-based (BB) scheduling
policy] are proposed in this paper. Decision tree is used to select the appropriate pol-

123

QoS-aware resource scheduling framework 261

Table 8 First iteration: allocating each cloud workload to the nearest cluster

C1 5 0 0 0 Distance from clusters Allocation to
the nearest
cluster

C2 5 3 0 0 Distance
from C1

Distance
from C2

Distance
from C3

Distance
from C4

C3 3 3 5 0
C4 5 3 5 3
Workload V1 V2 V3 V4

W1 3 3 5 0 6 3 0 5 C3

W2 5 0 0 0 0 3 6 11 C1

W3 5 5 3 3 11 8 5 0 C4

W4 5 0 0 0 0 3 6 11 C1

W5 5 3 5 3 11 8 5 0 C4

W6 5 3 0 0 3 0 3 8 C2

W7 5 3 1 5 9 6 3 2 C4

W8 5 3 0 0 3 0 3 8 C2

W9 2 3 4 5 9 6 3 2 C4

W10 4 4 1 5 9 6 3 2 C4

W11 3 3 5 4 10 7 4 1 C4

W12 5 4 3 0 7 4 1 4 C3

W13 3 5 2 0 5 2 1 5 C3

Table 9 Comparing new
centroids and the seeds

Value 1 Value 2 Value 3 Value 4

C1 5 0 0 0

C2 5 3 0 0

C3 3.6 4 3.3 0

C4 4 3.5 3.1 4.1

s1 5 0 0 0

s2 5 3 0 0

s3 3 3 5 0

s4 5 3 5 3

icy based on workload details described by cloud consumer. Cloud environment and
a scheduler that implements different scheduling policies based on the decision taken
by cloud provider. Resource scheduling procedure is shown in Fig. 6. Based on the
scheduling policy, the resources are allocated to the cloud workloads. The information
of the cloud workloads and computational resources is send to the allocation agent.
The allocation agent implements four resource scheduling policies: CCTB, TB, CB
and BB scheduling policy. Cloud workload management portal produces the cloud
workloads and calculates workload deadline time. Each workload is characterized by
their deadline, estimated budget and policy. The QoS of each cloud workload is also

123

262 S. Singh, I. Chana

Table 10 Second iteration: allocating each cloud workload to the nearest cluster

C1 5 0 0 0 Distance from clusters Allocation to
the nearest
cluster

C2 5 3 0 0 Distance
from C1

Distance
from C2

Distance
from C3

Distance
from C4

C3 3.6 4 3.3 0
C4 4 3.5 3.1 4.1
Workload V1 V2 V3 V4

W1 3 3 5 0 6 3 0.1 3.7 C3

W2 5 0 0 0 0 3 5.9 9.7 C1

W3 5 5 3 3 11 8 5.1 1.3 C4

W4 5 0 0 0 0 3 5.9 9.7 C1

W5 5 3 5 3 11 8 5.1 1.3 C4

W6 5 3 0 0 3 0 2.9 6.7 C2

W7 5 3 1 5 9 6 3.1 0.7 C4

W8 5 3 0 0 3 0 2.9 6.7 C2

W9 2 3 4 5 9 6 3.1 0.7 C4

W10 4 4 1 5 9 6 3.1 0.7 C4

W11 3 3 5 4 10 7 4.1 0.3 C4

W12 5 4 3 0 7 4 1.1 2.7 C3

W13 3 5 2 0 5 2 0.1 4.7 C3

Table 11 Cluster membership
Cluster (Cn) Cluster name Workloads

C1 Compute W2, W4

C2 Storage W6, W8

C3 Communication W1, W12, W13

C4 Administration W3, W5, W7, W9, W10, W11

represented in the scheduling request of the cloud workload. Similarly, QoS, such as
processing speed, is generated for each computational resource.

3.5.5.1 Cloud workload attributes 3,000 independent cloud workloads were gener-
ated randomly in CloudSim as cloudlets [41]. For each cloud workload, the attributes
of the cloud workload include deadline, estimated budget and scheduling policy. The
resource scheduling policies consider only one-dimensional QoS (processing speed).
The QoS is generated to be 1–32 with the ratio following given distribution of the QoS
request. In this paper, the six scenarios of the QoS distribution have been defined (See
Table 14).

3.5.5.2 Resource attributes For each set of resources, the attributes of the resource
include number of resources (or computing nodes), QoS provided, and the information

123

QoS-aware resource scheduling framework 263

Scheduling Policy
Decision

Generation

Cloud
Workloads

Resources

Allocation Agent
Objective
Function

Workload
Queue

Resource
Queue

Match
Queue

Fig. 6 Resource scheduling procedure

of each resource, which includes the deadline, estimated budget and scheduling policy.
All configurations about the resources will remain the same during the experiment. In
this paper, one-dimensional QoS (processing speed) has been implemented.

3.5.5.3 Allocation agent The allocation agent receives the cloud workloads and puts
them into the workload queue. While the workload queue is not empty, the allocation
starts the scheduling policy to find the right workload-resource match according to
the policy. To compare proposed QoS guided policies with the existing scheduling
policies, all the proposed policies have been implemented to get the performance data.

3.5.5.4 Decision tree-based scheduling criteria Classification tree analysis is used
when the predicted outcome is the class to which the data belong. Regression tree
analysis is used when the predicted outcome can be considered as a real number.

The classification and regression objective [68] require a set

I = {I1, . . . , In}

where I j , I ≤ j ≤ n, jεN is an object being reviewed and n is a rational number.
The objects may be the information on executing policies in different values of cost
and time (See Table 12). Each object is characterized with a set of variables:

Ii = {x1, . . . , xm, y}

where the x j are independent attributes, for which the values are known, and on
which the value of the target variable y is based and m is total number of independent
attributes. The independent attributes are: cost and time. The target variable is Policy.
A set of independent attributes is often defined as a vector:

123

264 S. Singh, I. Chana

Table 12 Policies description
Cost Time Policy

Minimum Minimum Compromised
Cost-time based

Maximum Minimum Time-based

Minimum Maximum Cost-based

Cost agreement Time agreement Bargaining-based

min max max min time agreed min min

cost agreed

Policy

Time Based Bargaining Based

Time

Compromised Cost Time BasedCost Based

Cost Time Time TimeCost Cost Cost

Fig. 7 Decision tree of scheduling policies

X = {x1, . . . , xm}

Every single variable x j can acquire values from a certain set:

C j = {c j1, c j2 . . .}

If the values of a variable are elements of a finite set, it is denoted as a categorical
variable. For example, the variable Policy acquires values from range {compromised
cost-time based, time-based, cost-based, bargaining-based}.

If a range Cy = {c1, c2 . . . } of the variable y is finite, then the objective is referred
to as classification objective, else the objective is referred to as regression objective.
The policy details are shown in Table 12.

Decision trees comprise a way of presenting rules in a hierarchical, sequential
structure. Figure 7 shows a decision tree for the data presented in Table 12. There
are different ways to transform logical and categorical variables into numeric ones.
Logical types, as a rule, are encoded by the figures 1 and 0.

For the transformation into a numeric variable, for example, the value of the variable
Policy = {compromised cost-time based, time-based, cost-based, bargaining-based}
may be replaced by the values {0, 1, 2, 3}.

Figure 7 shows the selection of policy based on the workload details provided by
user through the use of Table 12.

123

QoS-aware resource scheduling framework 265

Policy: Compromised Cost-Time Based (CCTB) Scheduling Policy
Data:
Name of Workload
Type of workload
Desired Deadline ()
Estimated Budget ()
Preferred Policy = CCTB
Result:
Each workload will be mapped to the resources within available budget and desired deadline as per the specified policy.
Begin:
Intilize resourceList [No. of Resources]
Intialize workloadList [No. of Workloads]
resourceList = getAvailbleResource()
workloadList = getWorkloadtoSchedule()
Step 1:

a) Group Workloads into two categories:
• Homogenous Workload
• Heterogeneous Workload

Homogenous workloads based on QoS as well as some relationship
among them (Dependency of workload (s) to another workload (s))

b) Evaluate the minimum execution time and price for every workload from the available set of resources by using cost and time
fitness formulas.

c) Calculate TECT
d) Calculate
e) Calculate TEC
f) If (TECT ≤ && TEC ≤)

{
If (≤)

{
Dispatch the workload

}
else

{
Redistribute workloads

}
}

else
{

Change the Scheduling Policy
}

Step 2:
a) Allot the Cloud customer whole deadline and budget into every workload partition in proportion to their least execution time

and cost respectively calculated in step 1 (b).
The deadline and budget is spread according to following rule: Execution time of workload may differ. Some
workload may require only small time to be completed and some need at least more than 2 hours.
There are many probable execution time and cost for each workload but use only and to allocate the
overall deadline and given budget correspondingly.

b) Sorting the entire resource list by giving highest priority to the expensive one based on their cost.
Step 3:
Select a resource to process a specific workload from the workload list so that && TEC ≤ .
Step 4:
Repeat the step 3 until all the Cloud workloads within both the partition have been scheduled and executed, otherwise rescheduling the
Cloud workloads to the resources.

Fig. 8 Compromised cost-time based (CCTB) scheduling policy

3.5.5.5 Compromised cost-time based (CCTB) scheduling policy In this scheduling
policy, cloud provider minimizes cost as well as execution time along with least energy
consumption. It calculates the total expected cost (TEC), total expected completion
time (TECT) and time difference (Td) to allocate the resources as specified in Eqs.
(5), (6) and (7). The allocation agent finds the missed deadlines and calculates Time
Difference for each workload then uses the extra available time to the workloads with
missed deadlines and executes all the cloud workloads within their corresponding
deadlines. The CCTB scheduling policy is shown in Fig. 8. The fitness value (TECT,
TEC, Dt) is calculated as follows:

Total expected completion time (TECT) = Ct + Et (5)

Deadline time (Dt) = Dt = Wd − Curt (6)

123

266 S. Singh, I. Chana

Total expected cost (TEC) = Cc + Cmin (7)

The complexity (Eq. 8) of CCTB scheduling policy is influenced by number of
change points (CP), i.e. rescheduling and requested resources (r) of workload being
scheduled. Here,

CP = (St + Te + Ts + Rt) (8)

where, St = start times of all workloads, Te = end times of all workloads, Ts = suspend
times of all workloads, Rt = resume times of all workloads.

Consider lesser pre-emption as its objective. The complexity of the algorithm
mainly depends on two important objectives:

• Minimize the rejection rate of the incoming requests.
• Minimize reshuffle cost (avoid rescheduling of already accommodated leases as

much as possible).

The mapping is done with the objective of minimum cost, time and energy simultane-
ously.

3.5.5.6 Cost-based (CB) scheduling policy Cost-based (CB) scheduling policy
works as per following: first, the allocation agent begins to compute the cost of each
cloud workload then sort, as the priority is given to the cloud workload which has
maximum budget. If the two workloads have same budget then that workload will
execute first that has lesser execution time. By default, PS = 1. The allocation agent
then schedules all the workloads with high budget request to the resources that provide
high QoS. Finally, all other workloads are scheduled on the available resources set.
The cost-based (CB) scheduling policy is shown in Fig. 9. The fitness value (Estimated
Cost) is calculated as follows (Eq. 9):

Estimated cost: budgeted/hour (BH) = BE

Wd − Curt
(9)

The mapping is done with the objective of minimum cost for workload execution.
To maximize the chance that the desired deadline can still be met after terminating
one resource, termination is only done if the estimated completion time is lesser than a
desired deadline (Et < Wd). In the current implementation of cost-based scheduling
policy, consider as a constant coefficient.

3.5.5.7 Time-based scheduling policy Time-based (TB) scheduling policy works as
per following: first, the allocation agent begins to compute the deadline time of the
cloud workload in the given budget. Allocate resources based on time, the workload
which has shortest deadline time (Dt) will execute first. If the two workloads have
same deadline time then the workload will execute first that has lesser execution time.
By default, PS = 1. The allocation agent then schedules all the cloud workloads with
smallest execution time request to the resources that provide high QoS. If any deadline
found missed then recalculate the execution time by increasing the value of processing

123

QoS-aware resource scheduling framework 267

Fig. 9 Cost-based (CB) scheduling policy

Fig. 10 Time-based (TB) scheduling policy

speed (PS) and it will increase cost only. The time-based (TB) scheduling policy is
shown in Fig. 10. The fitness value (estimated time) is calculated as follows (Eqs. 10,
11):

For homogenous workloads

Execution time (Et) = Workload remained ∗ Workload runtime (10)

For heterogeneous workloads

Execution time (Et) =
n∑

i=1

Wi Runtime (11)

DoMapping(), in both cost and time scheduling policies, takes care of budgeting
for hired resources and decreases the available budget based on the price of the hired

123

268 S. Singh, I. Chana

Fig. 11 Bargaining based (BB) scheduling policy

resources per hour. If there is not enough budget, then DoMapping() terminates each
hired resource before it starts a new mapping cycle [69]. The mapping is done with
the objective of minimum execution time for workload execution.

3.5.5.8 Bargaining-based (BB) scheduling policy The implementation complies
with the negotiation among the various resources and cloud workload producer along
with different time slots. The allocation agent allocates the resources based on the
bargaining between them. The bargaining-based (BB) scheduling policy is shown in
Fig. 11. The mapping is done with the objective of best negotiation between consumer
and provider. The fitness value (deadline urgency) is calculated as follows:

• Deadline urgency—Deadline urgency (Du), which specifies cloud customer
urgency to get workload (s) completed, is defined as (Eq. 12):

123

QoS-aware resource scheduling framework 269

Du = [Wd − St]

[Et]
− 1 (12)

where St is the start time of the user workload, Wd is desired deadline and Et is
the execution time of cloud customer’s workload. The deadline is considered very
urgent when Du < 0.25, intermediate when 0.25 < Du < 0.75 and relaxed when
Du > 0.75. This metric shows how the scheduler deals with cloud customer with
different requirements on time.

• Budget per workload: The budget provided by the cloud customer for their work-
load is divided by the number of workloads contained within the application to
normalize the budget across all the workloads. This metric examines how the
schedulers allocate resources fairly among different cloud customers with differ-
ent budget groups.

• Amount of deadlines lost with rise in quantity of cloud customer workloads: This
metric is used to examine how the scheduling algorithms are able to cope up with
multiple cloud customers when requirement for resources exceeds their availabil-
ity.

3.5.6 Scheduler

Scheduler is used to schedule the cloud workloads and map the cloud workloads
with available resources based on the policy defined by user. Scheduler uses minimum
number of resources to serve the cloud workloads within specified budget and deadline.
Energy is also calculated and compared with threshold energy value at different value
of resources. The workload is dispatched only, if the workload is executed within
described budget and deadline and actual energy consumption is less than the threshold
energy value. Dispatcher is used to dispatch the cloud workloads for execution. One
cloud workload details and provided to the dispatcher.

A particular cloud workload is submitted to the compute resource for calculating
the amount of resources required. The workload wrapper is created by allocating the
resources to the cloud workloads. After that the tentative mapping is committed and
each mapping is stored. The sequence diagram of dispatching workloads is shown in
Fig. 12. The scaling listener is used to handle the request from various cloud consumers
and allocate the cloud workloads to the available resources efficiently based on the
workload details submitted by the cloud consumer. Resource secluding is done in two
steps: in first step, the resource requirement for a particular cloud workload has been
computed. In second step, discover processor properties like processing cost, speed
and MIPS rating. After execution of every cloud workload, the processor properties
are saved for future purpose. The resource scheduler schedules the incoming cloud
workloads based on the workloads’ details. First of all, get cloud workloads to sched-
ule and then find appropriate and available resources and cloud workloads mapped
efficiently based on the scheduling policies. All the incoming workloads are put into
different queues than the queue that contains already submitted cloud workloads. The
mapping is saved for future purpose.

Workload monitor is used to check the status of cloud workloads. The loop workload
monitor is used to monitor the incoming cloud workloads. The queries related to

123

270 S. Singh, I. Chana

Fig. 12 Sequence diagram of dispatching workloads

Fig. 13 Sequence diagram of workload monitoring

workload monitoring are asked and replied according to the status. After the execution
of the cloud workload, the status is changed by workload listener from executing to
finish. After the successful execution of cloud workload the status is updated in the
system. The sequence diagram of workload monitoring is shown in Fig. 13. There
are different clusters of cloud workloads created and put the incoming workloads in
suitable cluster.

123

QoS-aware resource scheduling framework 271

4 Experimental setup and results

Tools used for setting cloud environment are Microsoft Visual Studio 2010, Net-
Beans IDE 7.1.2, CloudSim 3.0, IntegratedNETJavaWeb and SQL Server 2008.
Microsoft Visual Studio 2010 is an Integrated Development Environment from
Microsoft. We have developed user interface of CWMF in .NET framework. The
NetBeans IDE 7.1.2 is a modular, standards-based, Integrated Development Environ-
ment (IDE) written in the Java programming language. NetBeans is used to execute the
CloudSim toolkit in which all the four scheduling policies have been implemented.
The CloudSim toolkit supports both system and behavior modeling of cloud sys-
tem components such as data centers, virtual machines (VMs) and resource provi-
sioning policies. Currently, it supports modeling and simulation of cloud comput-
ing environments consisting of both single and inter-networked Clouds (federation
of clouds). Moreover, it exposes custom interfaces for implementing policies and
provisioning techniques for allocation of VMs under inter-networked cloud com-
puting scenarios [41]. The main advantages of using CloudSim for initial perfor-
mance testing include: (1) time effectiveness: it requires very less effort and time to
implement cloud-based application provisioning test environment and (2) flexibility
and applicability: developers can model and test the performance of their applica-
tion services in heterogenous cloud environments (Amazon EC2, Microsoft Azure)
with little programming and deployment effort. CloudSim offers the following novel
features:

• Support for modeling and simulation of large-scale cloud computing environments,
including data centers, on a single physical computing node.

• A self-contained platform for modeling clouds, service brokers, provisioning, and
allocation policies.

• Support for simulation of network connections among the simulated system ele-
ments.

• Availability of a virtualization engine that aids in the creation and management of
multiple, independent, and co-hosted virtualized services on a data center node.

• Flexibility to switch between space-shared and time-shared allocation of process-
ing cores to virtualized services.

The tool used to integrate Java with Microsoft Technology is called IntegratedNET-
JavaWeb. Through this tool some Java methods can call from .NET code, and pass some
values to Java or .NET and vice versa. In this work, there is CWMP, i.e. ASP.NET
application, which interacts with Java programs, i.e. CloudSim. The two IDEs for
Application Visual Studio 2010 and NetBeans IDE 7.1.2 have been used. Microsoft
SQL Server 2008 is a relational database management system developed by Microsoft.
User information, workload details and resource details are stored in database through
SQL Server.

4.1 Framework validation

Cloud workload management framework has been developed to optimize the workload
schedule based on scheduling policies in simulated cloud environment. CWMF is used

123

272 S. Singh, I. Chana

NETBEANS

CloudSim

Microsoft Visual Studio

.NET FRAMEWORK

CWMP
IntegratedNETJava

Web

SQL
SERVER

Cloud
Consumer

Fig. 14 Simulation environment

to execute the cloud workloads using available resources within the available budget
and desired deadline. The mapping of resources to the cloud workloads is based on the
scheduling policy. To continue with this system cloud consumer selects the workload
name, desired deadline and preferred policy from the drop down list and enters the
estimated budget (minimum $50). Based on workload detail, workload management
system (WMS) will assign the workload type (compute, communication, adminis-
trator and storage) to every workload. Based on user details, the details of generated
cloud workload schedule is entered to send these details to specific user. The workload
schedule generated by cloud provider is displayed in the specific user account.

4.2 Simulation environment

The integration of multiple environments used to conduct experiments is shown in Fig.
14. Cloud user interacts with cloud workload management framework through CWMP
to submit the workload details. User information, workload detail and resource detail
are stored in database through SQL Server. Cloud workload management portal is
implemented in .NET framework and framework is running in Microsoft Visual Studio.
NetBeans is used to execute the CloudSim toolkit in which all the four scheduling
policies have been implemented. The workload details gathered from various users
are transferred in a specific format from .NET framework to NetBeans through the
use of IntegratedNETJavaWeb.

4.3 Comparison with other simulators

Java-based simulator [40] and SwinDeW-C System [39] can execute only homogenous
type of workflows. Java-based simulator [40] considers randomly generated workflows
without maintaining any queue which leads to conflict in execution and wastage of
time while SwinDeW-C System [39] not considered the communication time and
communication cost during mapping of resources and workloads. But our simula-
tion environment can be used to execute both homogenous and heterogeneous cloud
workloads and considers both communication time and communication cost.

123

QoS-aware resource scheduling framework 273

Table 13 Scheduling
parameters and their values

Parameter Value

Number of resources 50–250

Number of cloudlets (workloads) 3,000

Bandwidth 1,000–3,000 B/S

Size of cloud workload 10,000+ (10–30 %) MB

Number of PEs per machine 1

PE ratings 100–4,000 MIPS

Cost per cloud workload $3–$5

Memory size 2,048–12,576 MB

File size 300 + (15–40 %) MB

Cloud workload output size 300 + (15– 50 %) MB

4.4 Experimental results

3,000 independent cloud workloads were generated randomly in CloudSim as
cloudlets. For each cloud workload, the attributes of the cloud workload include dead-
line, estimated budget and scheduling policy. In this paper, the six scenarios of the QoS
distribution have been defined. For each set of resources, the attributes of the resource
include number of resources (or computing nodes), QoS provided, and the informa-
tion of each resources, which includes the deadline, estimated budget and scheduling
policy. All configurations about the resources will remain the same during the exper-
iment. In this paper, one-dimensional QoS (processing speed) has been implemented.
The allocation agent receives the cloud workloads and puts them into the workload
queue. While the workload queue is not empty, the allocation starts the scheduling
policy to find the right workload-resource match according to the policy. To compare
proposed QoS guided policies with the existing scheduling policies, all the proposed
policies have been implemented to get the performance data. Machine Learning tech-
niques are being used for making decisions based on some specified rules. Here, ten
different cloud workloads along with identification number (WId) are considered to
show how proposed (four) scheduling policies [CCTB scheduling policy, time-based
(TB) scheduling policy, cost-based (CB) scheduling policy and bargaining-based (BB)
scheduling policy], working in different criteria, perform better than already existing
policies. The attributes of the cloud workload include deadline, estimated budget and
policy.

To evaluate the effectiveness of the scheduling policies discussed in Sect. 3.5.5,
the simulator namely CloudSim [41] has been used to calculate the execution time
for each of them. In this section, the performance of all the algorithms is discussed.
Table 13 shows the characteristics of resources and cloudlets that have been used
for all the experiments. User cloud workloads are modeled as independent parallel
applications are modeled which is computation intensive. Thus the data dependency
among the cloud workloads in the parallel applications is negligible. Each cloud
workload is parallel and is hence considered to be independent of any other cloud
workload.

123

274 S. Singh, I. Chana

Table 14 Cost related to
different processing speeds

Service PS (MIPS) MIPS rating Cost ($)/workload

Service 1 1 100 0

Service 2 2 250 50

Service 3 4 500 100

Service 4 8 1,000 200

Service 5 16 2,000 400

Service 6 32 4,000 800

Table 15 Deadline urgency
Du Cc ($) Ct (s)

Du > 0.75 1 10/60 = 0.17

0.25 ≤ Du ≤ 0.75 3 60/60 = 1

Du < 0.25 5 120/60 = 2

All the policies consider only one-dimensional QoS (processing speed) described
in Table 14. The QoS is generated to be 1–32 with the ratio following given distribution
of the QoS request.

The execution time (Et) is calculated with the formula given below (Eq. 13):

Et = Dt

BE × PS
× 100 (13)

where Dt is deadline time, BE is estimated budget and PS is processing speed.

4.4.1 Compromised cost-time based (CCTB) scheduling policy

Deadline urgency (Du): it specifies cloud customer urgency to get workload (s) com-
pleted as specified in Eq. 14. This metric shows how the scheduler deals with cloud
customer with different requirements on time. The value of communication cost (Cc)

and communication time (Ct) depends on the deadline urgency (Du) as shown in Table
15. Assign minimum cost to every workload based on user requirements.

Du = Dt

Et
− 1 (14)

The total expected cost (TEC) and total expected completion time (TECT) are
calculated using the formula (Eq. 15) discussed in CCTB scheduling policy and the
value for each workload will be calculated as shown in Table 16. For execution of
cloud workload under this policy the condition will be fulfilled strictly as specified in
Eq. 15:

TECT ≤ Dt && TEC ≤ BE (15)

Time difference (Td) = Dt − TECT (16)

123

QoS-aware resource scheduling framework 275

Table 16 Total expected cost and total expected completion time

WId Wd (s) BE ($) Dt (s) Et (s) Ct (s) CC ($) Du Cmin ($) TEC (s) TECT (s)

W1 12:00 100 12 12 2 5 0 88 93 14

W2 4:00 62 4 6.45 2 5 −0.37 50 55 8.45

W3 6:00 120 6 5 2 5 0.2 112 117 7

W4 21:00 170 21 12.35 1 3 0.7 161 164 13.35

W5 10:00 155 10 6.45 1 3 0.55 152 155 8.45

W6 2:00 200 2 1 0.17 1 1 197 198 1.17

W7 4:00 252 4 1.58 0.17 1 1.53 246 247 1.75

W8 20:00 265 20 7.54 0.17 1 1.65 262 263 7.71

W9 4:00 72 4 5.55 2 5 −0.27 61 66 7.55

W10 14:00 65 14 21.53 2 5 −0.34 53 58 23.53

Table 17 Time difference (Td)

WId BE ($) Dt (s) TEC TECT Td Deadline fulfilled

W1 100 12 105 14 −2 No

W2 60 4 65 8.45 −4.45 No

W3 120 6 125 7 −1 No

W4 170 21 173 13.35 7.65 Yes

W5 150 10 153 8.45 1.55 Yes

W6 200 2 201 1.17 0.83 Yes

W7 250 4 253 1.75 2.25 Yes

W8 260 20 263 7.71 12.29 Yes

W9 70 4 75 7.55 −3.55 No

W10 65 14 70 23.53 −9.53 No

where Wd is desired deadline in seconds, BE is estimated budget in dollars, Dt is
deadline time in seconds, Ct is communication time, Et is execution time, Ccis com-
munication cost, TECT is total expected completion time, Du is deadline urgency
and TEC is total expected cost. The time difference (Td) is calculated by the formula
defined above (Eq. 16) as shown in Table 17. If the value of Td > 0 then the cloud
workload will be executed before their deadline otherwise it will not be executed
before deadline.

Number of deadlines missed: 5

4.4.1.1 Rescheduling of cloud workloads The workloads W4, W5, W6, W7 and W8
have extra time than required for execution within their deadline, the total extra time
(7.65 + 1.55 + 0.83 + 2.25 + 12.29) = 24.75 Seconds and the time required to execute
the pending workloads (−2−4.45−1−3.55−9.53) = −20.53 s is less than the time
available. So the W1, W2, W3, W9 and W10 will be executed within their deadline
and budget respectively as shown in Table 18.

123

276 S. Singh, I. Chana

Table 18 Rescheduling of
cloud workloads

WId Dt (H) TECT Updated Dt (s) Deadline fulfilled

W1 12 14 14 Yes

W2 4 8.45 8.45 Yes

W3 6 7 7 Yes

W4 21 13.35 13.35 Yes

W5 10 8.45 8.45 Yes

W6 2 1.17 1.17 Yes

W7 4 1.75 1.75 Yes

W8 20 7.71 7.71 Yes

W9 4 7.55 7.55 Yes

W10 14 23.53 23.53 Yes

After rescheduling, deadline missed = 0
The implementation of compromised cost-time based scheduling policy follows

the algorithm shown in Fig. 8. Calculate the TEC, TECT and time difference (Td)

to allocate the resources. The allocation agent finds the missed deadlines and cal-
culates time difference for each workload then uses the extra available time to the
workloads with missed deadlines and executes all the cloud workloads within their
corresponding deadlines. The performance evaluation criterion to evaluate the per-
formance of CCTB for resource scheduling has been defined. The two parameters
namely cost and execution time has been selected. The cost and execution time mea-
sured in dollars and seconds, respectively. To validate CCTB scheduling policy, 3,000
cloud workloads and 50–250 resources are considered. To evaluate the performance of
CCTB, the effects of different number of cloud workloads have been investigated. The
two existing reference algorithms namely CTC [39] and DBD-CTO [40] have been
used.

• Compromised time cost (CTC) scheduling algorithm—compromised cost-time
scheduling policy considers the characteristics of cloud computing to accommo-
date instance-intensive cost-constrained workflows by compromising execution
time and cost. The simulation performed demonstrates that the algorithm can cut
down the mean execution cost and shorten the mean execution time within the
user-designated execution cost [39].

• Deadline and budget distribution-based cost-time optimization (DBD-CTO) work-
flow scheduling algorithm that minimizes execution cost while meeting timeframe
for delivering results and analyze the behavior of the algorithm. In this algorithm,
the two constraints are considered: deadline and budget. For the workflow, a list
of three services for each task of the workflow was created. The scheduler that
is implemented in the broker part calls DBD-CTO to choose a particular service
such that overall workflow execution should be in deadline and budget constraints
specified by the user [40].

Both the algorithms are doing resource scheduling based on the homogenous cloud
workloads without considering heterogeneous workloads. The concept of reschedul-

123

QoS-aware resource scheduling framework 277

Fig. 15 Execution time comparison of cloud workloads

ing is also not used in these existed algorithms. All the three algorithms com-
promised time cost (CTC) scheduling algorithm (existing), deadline and budget
distribution-based cost-time optimization (DBD-CTO) (existing) and CCTB (pro-
posed) have been implemented in CloudSim by making the changes in the VMSched-
uler.java according to CCTB scheduling policy and then compared in different
scenarios.
Test case 1: execution time comparison of cloud workloads: After executing the val-
ues on scheduling parameters for different algorithms, the cloud simulator CloudSim
provides the execution summary for DBD-CTO, CTC and CCTB. The execution time
for executing the same cloud workloads using same resources is 1,803 s in DBD-CTO
whereas time taken to execute the same Cloud workloads by CTC algorithm is 1,330 s.
CCTB is implemented and executed with same environment. The same cloud workload
is executed in CCTB scheduling policy in 1,243 s. The execution time taken by CCTB
scheduling policy is lesser than other scheduling algorithms. Figure 15 demonstrates
the effectiveness of the CCTB scheduling policy in managing the time requirement of
the cloud user.

The characteristics of cloudlets are used to compare the execution time of three
algorithms. In this case lowest execution time was achieved in case of CCTB schedul-
ing policy whereas DBD-CTO resulted in the highest execution time.
Test case 2: cost comparison of cloud workloads: Figure 16 shows the effect on cost by
three algorithms. The cost for executing the same cloud workload using same resources
is $340 in case of DBD-CTO whereas cost spent to execute the same workload by CTC
is $220. The same workload is executed in CCTB scheduling policy is $170. Figure
16 shows the lowest cost achieved by CCTB where DBD-CTO resulted in highest
cost.
Test case 3: execution time for different number of resources: Figure 17 shows the effect
of increasing the number of resources, while keeping the number of cloud workloads
being submitted to CWMF constant. In this experiment, 3,000 cloud workloads were
executed with varying numbers of resources. The results depict that by increasing the

123

278 S. Singh, I. Chana

Fig. 16 Cost comparison of cloud workloads

Fig. 17 Execution time for different number of resources

number of resources, the execution time decreases. CCTB scheduling policy performs
better than DBD-CTO and CTC. Figure 17 shows the execution time decreases for
CCTB and CTC in same proportion as we increase the number of resources.

This observation indicates that CCTB gives an equally good performance in com-
parison that given by CCTB and DBD-CTO.
Test case 4: cost for different number of resources: The cost of execution of different
cloud workloads for three algorithms varies. The costs of resources are decreasing
with increasing the number of resources. Figure 18 shows the CCTB scheduling policy
executes the same number of cloud workloads at a minimum cost. The cost of workload
execution is less using CCTB in comparison to the execution cost using CCTB and
DBD-CTO. As the cost with Cloud resource is significant so the cost benefit (4–
38 %) was notified with different number of resources. However, more benefit will be
anticipated if the variations are higher.

123

QoS-aware resource scheduling framework 279

Fig. 18 Cost for different number of resources

Fig. 19 Execution time for different number of cloud workloads

Test case 5: execution time for different number of cloud workloads: We have also
performed experiments to determine the effect of an increase in number of workloads
on cost and execution time. We have sent 3,000 workloads to cloud from the experiment
result shown in Fig. 19, we can conclude that the time taken to execute workloads
reduced using CCTB scheduling policy. The execution time reduction in execution is
about 14–26 %. The execution time is increasing with the increase in number of cloud
workloads and the execution time of CCTB for same number of cloud workloads is
slightly lesser than CTC as shown in Fig. 19.
Test case 6: cost for different number of cloud workloads: Figure 20 shows that
cost per cloud workload increases as the number of submitted cloud workload

123

280 S. Singh, I. Chana

Fig. 20 Cost for different number of cloud workloads

increases. The existing algorithm based workload’s execution resulted in a sched-
ule which is expensive in comparison to the CCTB scheduling policy. From all
the experimental results, the workload execution using the CCTB scheduling pol-
icy performs better. The overall cost for cloud consumer’s workload execution is
less.

Our scheduling policy performed better with more number of cloud workloads as
compared to existing scheduling policies.
Test case 7: number of missed deadlines: There are different numbers of deadlines
missed in different algorithms. With increasing the number of cloud workloads, the
number of deadlines missed is also increasing. The number of deadlines missed in
Deadline and budget distribution-based cost-time optimization (DBD-CTO) is maxi-
mum and minimum in CCTB scheduling policy as shown in Fig. 21.

The variation in number of deadlines missed at 500 workloads is lesser as compared
to the 3,000 workloads.
Test case 8: execution time variation: The execution time is decreasing with the
increase in budget as shown in Fig. 22. In this research work, minimum cost for
execution is $50. At a minimum budget, the execution time is larger. With the increase
in budget, the more number of resources provided to reduce the execution time and
number of deadlines missed are also decreasing. There is slight reduction in execution
time with budget ($150–$200).
Test case 9: execution cost variation: The cost of executing the cloud workloads is
varying with the increase in allocated budget as shown in Fig. 23. Execution cost is
increasing from minimum budget to maximum budget in same proportion approxi-
mately.
Test case 10: energy consumption: For different number of resources there is fixed
threshold value of energy consumed during cloud workload execution. The calculated
energy consumption is compared with threshold value and the cloud workload is exe-

123

QoS-aware resource scheduling framework 281

Fig. 21 Number of missed deadlines

Fig. 22 Execution time variation

cuted only if the calculated energy consumption is less than or equal to threshold value.
For successful execution of a cloud workload, the actual energy consumption (ECloud)

will be less than threshold energy value (EThreshold). Figure 24 shows the compari-
son of actual energy consumption and threshold energy value. Energy consumption is
reduced with increase in number of resources. The actual energy consumption (ECloud)

reduces up to 9.99 % at 100 resources and 11.02 % at 300 resources.

123

282 S. Singh, I. Chana

Fig. 23 Execution cost variation

Fig. 24 Energy consumption and number of resources

4.4.2 Cost-based (CB) scheduling policy

Allocate resources based on cost, the workload which has more budgets (BE) will
execute first. If the two workloads have same budget then that workload will execute
first that has lesser execution time. By default, PS = 1.

The implementation of cost-based scheduling policy follows the algorithm shown
in Fig. 9. First, the allocation agent begins to compute the cost of each cloud workload

123

QoS-aware resource scheduling framework 283

BE 265 252 200 170 155 120 100 72 65 62

Workload W8 W7 W6 W4 W5 W3 W1 W9 W10 W2

Resource R1 R2 R3 R4 R5 R6 R7 R8 R9 R10

then sorted as the priority given to the cloud workload which has maximum budget.
The allocation agent then schedules all the workloads with high budget request to the
resources that provide high QoS. Finally, all other workloads are scheduled on the
available resources set.

4.4.3 Time-based (TB) scheduling policy

Allocate resources based on time, the workload which has shortest deadline time (Dt)

will execute first. If the two workloads have same deadline time then that workload
will execute first that has lesser execution time. By default, PS = 1. In this scenario,
there are three workloads (W2, W7, W9) having same deadline time, sorted according
to the maximum budget (W7 > W9 > W2).

Dt 2 4 4 4 6 10 12 14 20 21

Workload W6 W7 W9 W2 W3 W5 W1 W10 W8 W4

Resource R1 R2 R3 R4 R5 R6 R7 R8 R9 R10

Number of deadlines missed: 3 (W2, W9, W10)
To execute W2, W9 and W10 within their deadline, change budget according to the

processing speed, and add cost $50 if user wants to double the processing speed (see
Table 14). With PS = 2, these three workloads will be executed before deadline, by
recalculating the value of Et as described in Table 19.

Now the workloads W2, W9 and W10 will be executed before their deadline.
The implementation of Time-Based Scheduling Policy follows the algorithm shown

in Fig. 10. First, the allocation agent begins to compute the deadline time of the
cloud workload on the given budget. The allocation agent then schedules all the cloud
workloads with smallest execution time request to the resources that provide high
QoS. If any deadline found missed then recalculate the execution time by increasing
the value of processing speed (PS) and it will increase cost only.
Test case 1: completion time vs. allocated budget: The cloud workload is being exe-
cuted with different constraints. There is a fixed deadline, i.e. 1,500 s; the cloud work-

Table 19 Actual and improved
execution time

WId Dt (s) Actual Et (PS = 1) Improved Et (PS = 2)

W2 4 6.45 3.22

W9 4 5.55 2.775

W10 14 21.53 10.765

123

284 S. Singh, I. Chana

Fig. 25 Completion time vs. allocated budget

Fig. 26 Completion time of different workloads

load should be executed successfully before deadline. In this experiment, different
budgets were allocated. In first come first serve (FCFS) based scheduling policy,
the execution time is larger at different budgets. The execution time in cost-based
scheduling policy is lesser than FCFS but more than time-based scheduling policy.
The execution time is lesser in time-based scheduling policy at maximum budget that
has been allocated. The execution time in both the cost and time-based scheduling
policy is decreasing but remains same in FCFS as shown in Fig. 25. The completion
time is reduced to 53.9 % at the maximum budget, i.e. $300.
Test case 2: completion time of different workloads: The execution time required to
complete the cloud workload (W) is maximum in FCFS and minimum in cost-based
scheduling policy, but least in time-based scheduling policy as shown in Fig. 26. Both
cost and time-based scheduling policy executes the cloud workload before desired
deadline.

123

QoS-aware resource scheduling framework 285

Table 20 Cloud workloads
detail

WId Wd (s) BE ($) Et

W1 12:00 100 12

W2 4:00 62 6.45

W3 6:00 120 5

W4 21:00 170 12.35

W5 10:00 155 6.45

W6 2:00 200 1

W7 4:00 252 1.58

W8 20:00 265 7.54

W9 4:00 72 5.55

W10 14:00 65 21.53

Table 21 Resource detail

Time slot (s)

0–2 2–4 4–8 8–16 16–32

R C ($) R C ($) R C ($) R C ($) R C ($)

R1 100 R5 80 R8 105 R12 80 R16 160

R2 90 R6 75 R9 115 R13 85 R17 180

R3 110 R7 110 R10 125 R14 90 – –

R4 120 – – R11 90 R15 70 – –

4.4.4 Bargaining-based (BB) scheduling policy

Table 20 shows different cloud workloads along with their parameters such as deadline,
estimated budget and execution time.

The various resources (R) available for the execution of above cloud workloads
along with their execution cost (C) and classified according to time slots (seconds) are
described in Table 21.

The implementation complies with the negotiation among the various resources
and cloud workload producer along with different time slots. The allocation agent
allocates the resources based on the bargaining between them as shown below:

Et 12 6.45 5 12.35 6.45 1 1.58 7.54 5.55 21.53

Workload W1 W2 W3 W4 W5 W6 W7 W8 W9 W10

Resource R15 R11 R11 R15 R11 R2 R2 R11 R11 R16

The implementation of bargaining-based scheduling policy (BBSP) follows the
algorithm shown in Fig. 11. The implementation complies with the negotiation among
the various resources and cloud workload producer along with different time slots. The

123

286 S. Singh, I. Chana

Fig. 27 Number of deadlines missed

allocation agent allocates the resources based on the bargaining between them. The
number of missed deadlines in both the cases is shown in Fig. 27.

With the increase in number of cloud workloads, the rate of missed deadlines is
increased. In both the policies, the number of deadlines missed is varying. The lesser
number of deadlines missed in BBSP as compared to FCFS.

4.5 Statistical analysis

Statistical significance of the results has been analyzed by coefficient of variation
(CoV), a statistical method. CoV is statistical measure of the distribution of data about
the mean value. CoV is used to compare to different means and furthermore offers
an overall analysis of performance of the technique used for creating the statistics. It
states the deviation of the data as a proportion of its average value, and is calculated
as follows (Eq. 17):

CoV = σ

μ
× 100 (17)

where σ is a standard deviation and μ is mean. CoV of execution time and cost has
been studied of Cloud workload of every scheduling policy as shown in Figs. 28 and
29.

CoV calculated for execution time and cost results attained by CTC, CCTB and
DBD-CTO resource scheduling polices. Range of CoV (0.7–3 %) for execution time
and (0.5–2 %) for cost approves the stability CCTB resource scheduling policy as
shown in Figs. 28 and 29.

123

QoS-aware resource scheduling framework 287

0

2

4

6

8

10

12

14

500 1000 1500 2000 2500 3000

DBD-CTO

CTC

CCTB

C
oe

ff
ic

ie
nt

 o
f

V
ar

ia
tio

n
(%

)

Number of Workloads

Fig. 28 CoV for execution time with each secluding policy

0

1

2

3

4

5

6

7

500 1000 1500 2000 2500 3000

DBD-CTO

CTC

CCTB

C
oe

ff
ic

ie
nt

 o
f

V
ar

ia
tio

n
(%

)

Number of Workloads

Fig. 29 CoV for cost with each secluding policy

Small value of CoV signifies CCTB is more efficient in resource scheduling in the
situations where the number of cloud workloads has changed. Value of CoV decreases
as the number of workloads is increasing. Statistical analysis demonstrates the CCTB
outperforms other resource scheduling polices for large numbers of cloud workloads.
With small value of CoV system is more stable and CCTB resource scheduling policy
attained the best results in the cloud for cost and execution time as QoS parameters.

4.6 Discussions

The performance of resource scheduling policies of CWMF has been compared with
existing resource scheduling polices. The performance of CWMF has been analyzed
with different number of cloud workloads and resources. The performance of frame-
work has been evaluated with respect to execution time, cost and energy consumption.
Execution cost permits the evaluation for selection of resource whereas duration of
workload execution evaluates by execution time. Dynamic voltage supply can be
adjusted by energy consumption. The policy in which cloud provider minimizes the
cost as well as execution time along with least energy consumption is called CCTB
scheduling policy. CCTB reduces the execution time by up to 30.94 % compared to
deadline and budget distribution-based cost time optimization (DBD-CTO) and 6.54 %

123

288 S. Singh, I. Chana

for CTC. CCTB reduces the execution cost by up to 50 % compared to DBD-CTO
and 22.72 % for compromised time cost (CTC). The results depict that by increasing
the number of resources, the execution time decreases. The costs of resources are
decreasing with increasing the number of resources. The CCTB scheduling policy
executes the same number of cloud workloads at a minimum cost. The execution time
is increasing with the increase in number of cloud workloads and the execution time
of CCTB for same number of cloud workloads is slightly lesser than CTC. The exist-
ing algorithm based workload’s execution resulted in a schedule which is expensive
in comparison to the CCTB scheduling policy. From all the experimental results, the
workload execution using the CCTB scheduling policy performs better. The overall
cost for cloud consumer’s workload execution is less. The number of deadlines missed
in DBD-CTO is maximum and minimum in CCTB. With the increase in budget, the
more number of resources provided to reduce the execution time and number of dead-
lines missed are also decreasing. The cost of executing the cloud workloads is varying
with the increase in allocated budget. The actual energy consumption (ECloud) reduces
up to 9.99 % at 100 resources and 11.02 % at 300 resources. Considering all these QoS
parameters (execution time, cost and energy consumption) and simulation results, it
is found that the CWMF provides a better solution for heterogenous cloud workloads
and approximates optimal solution for resource scheduling challenges. Approximate
cost to implement the proposed framework in real cloud environment depends upon
the number of resources required to fulfill the current demand and QoS requirements
submitted by the cloud consumer.

5 Conclusions

Cloud computing and its vital characteristics have been discussed in this paper. This
paper focuses on the resource scheduling challenges that cloud computing is facing
today. Several resource scheduling algorithms are compared with respect to the cloud
workload as an issue for the dynamic scalability of resources. This paper also gives an
insight about the problem of making decisions based on cost and time constraints in
cloud computing. The different cloud workloads have been identified and analyzed.
The QoS requirements for every cloud workload have been identified. The clustering
of these cloud workloads is done through K-means clustering algorithm by assigning
the appropriate weights to the different quality attributes. Further, workload based
cloud framework is proposed and implemented in this work. The experimental results
gathered through CloudSim clearly demonstrate that the proposed framework has bet-
ter performance in terms of execution time, cost and energy consumption as compared
to existing scheduling algorithms.

6 Future directions

Our proposed framework maps and executes the workloads based on workloads’
details given by user and resource details given by providers. In the future, we will
further develop an autonomic resource scheduling technique that efficiently sched-
ules the provisioned cloud resources and maintains the SLA based on user’s QoS

123

QoS-aware resource scheduling framework 289

requirements to reduce the above mentioned dependency. The proposed framework
presented in this paper can be extended further to add sensitivity of assumptions in
weight calculations of both homogenous and heterogenous cloud workloads. IaaS
providers can use these results to quickly assess possible reductions in execution
time and cost, hence having the potential to save energy. CloudSim toolkit has been
used to collect the current results but the same results would be verified on actual
Cloud resource present at Center of Excellence (CoE) in Grid Computing at Thapar
University.

Acknowledgments One of the authors, Sukhpal Singh, gratefully acknowledges the Department
of Science and Technology (DST), Government of India, for awarding him the INSPIRE (Innova-
tion in Science Pursuit for Inspired Research) Fellowship (Registration/IVR Number: 201400000761
[DST/INSPIRE/03/2014/000359]) to carry out this research work. We would like to thank all the anony-
mous reviewers for their valuable comments and suggestions for improving the paper. We would like to
thank Dr. Maninder Singh for helping in improving the language and expression of preliminary version of
paper.

References

1. Armando MF, Rean G, Anthony DJ, Randy K, Andy K, Gunho L, David P, Ariel R, Ion S, Matei Z
(2010) A view of cloud computing. Commun ACM 53(4):50–58

2. Rimal BP, Jukan A, Katsaros D, Goeleven Y (2011) Architectural requirements for cloud computing
systems: an enterprise cloud approach. J Grid Comput 9(1):3–26

3. Rimal P, Choi E (2009) A taxonomy and survey of cloud computing systems. In: Fifth international
joint conference on INC, IMS and IDC, Seoul, Korea

4. Buyya R, Yeoa CS, Venugopala S, Broberga J, Brandicc I (2009) Cloud computing and emerging IT
platforms: vision, hype, and reality for delivering computing as the 5th utility. Future Gener Comput
Syst 25(6):599–616

5. Dillon T, Wu C, Chang E (2010) Cloud computing: issues and challenges. In: 24th IEEE international
conference on advanced information networking and applications, Perth, Australia

6. Jesús JD (2013) Cloud deployment models, IBM, (Online). http://www.ibm.com/developerworks/
websphere/techjournal/1206_dejesus/1206_dejesus.html. Accessed 14 Jan 2013

7. Singh S, Chana I (2012) Cloud based development issues: a methodical analysis. Int J Cloud Comput
Serv Sci 2(1):73–84

8. Cirne W, Berman F (2001) A comprehensive model of the supercomputer workload. In: Fourth annual
IEEE international workshop on workload characterization, WWC-4, Austin, Texas

9. Gmach D, Rolia J, Cherkasova L, Kemper A (2007) Workload analysis and demand prediction of enter-
prise data center applications. In: IEEE 10th international symposium on workload characterization,
IISWC ’07, Boston, MA, USA

10. Cherkasova L, Gupta M (2002) Characterizing locality, evolution, and life span of accesses in enterprise
media server workloads. In: 12th international workshop on Network and operating systems support
for digital audio and video, FL, USA

11. Rolia J, Cherkasova L, Arlitt M, Andrzejak A (2005) A capacity management service for resource
pools. In: 5th international workshop on software and performance, Illes Balears, Spain

12. Arlitt MF, Williamson CL (1996) Web server workload characterization: the search for invariants. In:
ACM SIGMETRICS international conference on measurement and modeling of computer systems,
SIGMETRICS ’96, Philadelphia, PA, USA

13. Bobroff N, Kochut A, Beaty K (2007) Dynamic placement of virtual machines for managing SLA
violations. In: IFIP/IEEE integrated network management, Bombay

14. Verma A, Dasgupta G, Kumar T, Prad N (2009) Server workload analysis for power minimization
using consolidation. In: USENIX annual technical conference, San Jose, CA

15. Khan A, Yan X, Tao S, Anerousis N (2012) Workload characterization and prediction in the cloud: a
multiple time series approach. In: Network operations and management symposium (NOMS), IEEE,
Krakow, Poland

123

http://www.ibm.com/developerworks/websphere/techjournal/1206_dejesus/1206_dejesus.html
http://www.ibm.com/developerworks/websphere/techjournal/1206_dejesus/1206_dejesus.html

290 S. Singh, I. Chana

16. Chen SJ, Liang PH, Yang J-M (2010) Workload evaluation and analysis on virtual systems. In: IEEE
international conference on E-business engineering, 2010

17. Bossche RVD, Vanmechelen K, Broeckhove J (2010) Cost-optimal scheduling in hybrid IaaS clouds for
deadline constrained workloads. In: IEEE 3rd international conference on cloud computing, Florida,
USA

18. Xiong P, Wang Z, Malkowski S, Wang Q, Jayasinghe D, Pu C (2011) Economical and robust provi-
sioning of n-tier cloud workloads: a multi-level control approach. In: Distributed computing systems
(ICDCS), Minneapolis, Minnesota

19. Tsakalozos K, Roussopoulos M, Floros V, Delis A (2010) Nefeli: Hint-based execution of workloads
in clouds. In: International conference on distributed computing systems, Genova, Italy

20. Bossche RVD, Vanmechelen K, Broeckhove J (2013) Online cost-efficient scheduling of deadline-
constrained workloads on hybrid clouds. Future Gener Comput Syst 29(4):973–985

21. Kousiouris G, Cucinotta T, Varvarigou T (2011) The effects of scheduling, workload type and con-
solidation scenarios on virtual machine performance and their prediction through optimized artificial
neural networks. J Syst Softw 84(8):1270–1291

22. Mahambre S, Kulkarni P, Bellur U, Chafle G, Deshpande D (2012) Workload characterization for
capacity planning and performance management in IaaS cloud. In: IEEE cloud computing in emerging
markets (CCEM), Bangalore, India

23. Pandey S, Wu L, Guru S, Buyya R (2010) A particle swarm optimization-based heuristic for scheduling
workflow applications in cloud computing environments. In: Advanced information networking and
applications (AINA), 24th IEEE international conference, Perth, Australia

24. Topcuoglu H, Hariri S, Wu M-Y (1999) Task scheduling algorithms for heterogeneous processors. In:
Heterogeneous computing workshop, (HCW’99), San Juan, Puerto Rico

25. El-kenawy E-ST, El-Desoky AI, Al-rahamawy MF (2012) Extended max–min scheduling using petri
net and load balancing. Int J Soft Comput Eng (IJSCE) 2(4):198–203

26. Varalakshmi P, Ramaswamy A, Balasubramanian A, Vijaykumar P (2011) An optimal workflow based
scheduling and resource allocation in cloud. In: Advances in computing and communications. Springer,
Berlin, Heidelberg, pp 411–420

27. Li, Kun, Gaochao Xu, Guangyu Zhao, Yushuang Dong, and Dan Wang. “Cloud task scheduling based
on load balancing ant colony optimization”. In Chinagrid Conference (ChinaGrid), 2011 Sixth Annual,
pp. 3–9. IEEE, 2011.

28. Xu M, Cui L, Wang H, Bi Y (2009) A multiple QoS constrained scheduling strategy of multiple work-
flows for cloud computing. In: IEEE international symposium on parallel and distributed processing
with applications, MA, USA

29. Ambike S, Bhansali D, Kshirsagar J, Bansiwal J (2012) An optimistic differentiated job scheduling
system for cloud computing. Int J Eng Res Appl (IJERA) 2(2):1212–1214

30. Yu J, Buyya R, Tham CK (2005) Cost-based scheduling of scientific workflow applications on utility
grids. In: E-Science and grid computing, IEEE, IL, USA

31. Sakellariou R, Zhao H, Tsiakkouri E, Dikaiakos MD (2007) Scheduling workflows with budget con-
straints. In: Integrated research in GRID Comput, pp 189–202

32. Selvarani S, Sadhasivam GS (2010) Improved cost-based algorithm for task scheduling in cloud com-
puting. In: IEEE, computational intelligence and computing research (ICCIC), Tamilnadu, India

33. Dakshayini M, Guruprasad HS (2011) An optimal model for priority based service scheduling policy
for cloud computing environment. Int J Comput Appl 32(9):0975–8887

34. S. Ghanbari and. M. Othman, “A Priority based Job Scheduling Algorithm in Cloud Computing”,
Procedia Engineering, International Conference on Advances Science and Contemporary Engineering,
vol. 50, pp. 778–785, 2012.

35. Wu Z, Liu X, Ni Z, Yuan D, Yang Y (2013) A market-oriented hierarchical scheduling strategy in
cloud workflow systems. J Supercomput 63(1):256–293

36. Delavar AG, Javanmard M, Shabestari MB, Talebi MK (2012) RSDC (reliable scheduling distributed
in cloud computing). Int J Comput Sci Eng Appl (IJCSEA) 2(3):1–16

37. Moschakis IA, Karatza HD (2012) Evaluation of gang scheduling performance and cost in a cloud
computing system. J Supercomput 59(2):975–992

38. Zhan Z-H, Zhang J, Li Y, Chung HS-H (2009) Adaptive particle swarm optimization. IEEE Trans Syst
Man Cybern-Part B: Cybern 39(6):1362–1381

123

QoS-aware resource scheduling framework 291

39. Liu K, Jin H, Chen J, Liu X, Yuan D, Yang Y (2010) A compromised-time-cost scheduling algorithm
in swindew-c for instance-intensive cost-constrained workflows on a Cloud computing platform. Int J
High Perform Comput Appl 24(4):445–456

40. Verma A, Kaushal S (2012) Deadline and budget distribution based cost-time optimization workflow
scheduling algorithm for cloud. In: IJCA Proceedings on international conference on recent advances
and future trends in information technology (iRAFIT 2012)

41. Calheiros RN, Ranjan R, Rose CAFD, Buyya R (2009) CloudSim: a novel framework for modeling
and simulation of cloud computing infrastructures and services. In: Grid Computing and Distributed
Systems Laboratory, The University of Melbourne, Australia

42. Singh S, Chana I (2014) Energy based efficient resource scheduling: a step towards green computing.
Int J Energy Inf Commun 5(2):35–52

43. Singh S, Chana I (2014) Metrics based workload analysis technique for IaaS cloud. In: Proceedings
of international conference on next generation computing and communication technologies, 23rd and
24th April 2014, Dubai

44. Omer K, Maljevic I, Anthony R, Petridis M, Parrott K, Schulz M (2011) Dynamic scheduling of virtual
machines running HPC workloads in scientific grids. In: 3rd international IEEE conference on new
technologies, mobility and security (NTMS)

45. Cloud workloads (2013) CloudRoad, (online). http://www.1Cloudroad.com/Cloud-infrastructure-
providers-for-2013. Accessed 11 Feb 2013

46. Qureshi MRJ, Qureshi WA (2012) Evaluating requirement specification document to improve the
quality of software. AWERProc Inf Technol Comput Sci 1:596–600

47. Elghany MA, Khalifa N (2012) Quantifying software reliability attribute through the adoption of
weighting approach to functional requirements. In: International conference on software and computer
applications (ICSCA 2012), Singapore

48. Saeid M, Ghani AAA, Selamat H (2011) Rank-Order Weighting of Web Attributes for Website Eval-
uation. The International Arab Journal of Information Technology 8(1):30–38

49. Dromey RG (1995) A model for software product quality. IEEE Trans Softw Eng 21(2):146–462
50. Malik SU (2012) Customer satisfaction, perceived service quality and mediating role of perceived

value. Int J Mark Stud 4(1):68–76
51. Nallur V, Bahsoon R (2010) Design of a market-based mechanism for quality attribute tradeoff of

services in the cloud. In: ACM symposium on applied computing
52. Stefani A, Xenos M (2008) E-commerce system quality assessment using a model based on ISO 9126

and belief networks. Softw Qual Control 16(1):107–129
53. Davoudi M, Aliee FS (2009) A new AHP-based approach towards enterprise architecture quality

attribute analysis. In: Research challenges in information science, RCIS
54. Garofalakis J, Stefani A, Stefanis V, Xenos M (2008) Quality attributes of consumer-based M-

commerce systems, White Paper, University of Patras
55. Otieno C, Mwangi W, Kimani S (2012) Framework to assess software quality in ERP systems. In:

Scientific conference proceedings
56. Clements P, Kazman R, Klein M (2002) Evaluating software architectures: methods and case studies.

Addison-Wesley Longman, Boston, MA, USA
57. Meiappane A, Venkatesan VP, Roshini N, Nivedha S, Maheswar R (2013) Evaluation of software

architecture quality attribute for an internet banking system. Int J Sci Eng Res 4(4):1704–1708
58. Stefani A, Xenos MN (2009) Meta-metric evaluation of E-commerce-related metrics. Electr Notes

Theor Comput Sci (ENTCS) 233:59–72
59. Bhattacharjee PK (2010) Service quality measurement with minimum attributes (SERVQUAL-MA)

technique upgrade by human resource development. Int J Innov Manage Technol 1(3):322–327
60. Barbacci MR (2003) Software Quality Attributes and Architecture Tradeoffs. Carnegie Mellon Uni-

versity, Pittsburgh, Software Engineering Institute
61. Berander P, Damm L-O, Eriksson J, Gorschek T, Henningssonv, Jönsson P, Kågström S, Milicic D,

Mårtensson F, Rönkkö K, Tomaszewski P (2005) Software quality attributes and trade-offs. Blekinge
Institute of Technology

62. Brooke J (1996) SUS-A quick and dirty usability scale. Redhatch Consulting, UK
63. Singh RV, Bhatia MP (2011) Data clustering with modified K-means algorithm. In: IEEE-international

conference on recent trends in information technology, ICRTIT, Chennai
64. Gupta GK (2006) Introduction to data mining with case studies. PHI Learning Pvt. Ltd., New Delhi

123

http://www.1Cloudroad.com/Cloud-infrastructure-providers-for-2013
http://www.1Cloudroad.com/Cloud-infrastructure-providers-for-2013

292 S. Singh, I. Chana

65. Su M-C, Chou C-H (2001) A modified version of the k-means algorithm with a distance based on
cluster symmetry. IEEE Trans Pattern Anal Mach Intell 23(6):674–680

66. Kanungo T, Mount DM, Netanyahu NS, Piatko CD, Silverman R, Wu AY (2002) An efficient k-means
clustering algorithm: analysis and implementation. IEEE Trans Pattern Anal Mach Intell 24(7):881–
892

67. Mahendiran A, Saravanan N, Subramanian NV, Sairam N (2012) Implementation of K-means clustering
in cloud computing environment. Res J Appl Sci Eng Technol 4(10):1391–1394

68. Barseghyan A, Kupriyanov M, Kholod I, Yelizarov S, Thess M (2014) Analysis of data and processes:
from standard to realtime data mining. Re Di Roma-Verlag, Remscheid, Germany

69. V’azquez C, Huedo E, Montero RS, Llorente IM (2009) Dynamic provision of computing resources
from grid infrastructures and cloud providers. In: Workshops at the grid and pervasive computing
conference

123

	QRSF: QoS-aware resource scheduling framework in cloud computing
	Abstract
	1 Introduction
	2 Background and related work
	2.1 Cloud workload analysis
	2.2 Resource scheduling
	2.3 Our contributions

	3 Cloud workload management framework
	3.1 Objectives and commitments
	3.2 Framework assumptions
	3.3 Problem statement
	3.4 Objective function
	3.5 Framework units
	3.5.1 Cloud workload management portal
	3.5.2 Bulk of workloads
	3.5.3 Cloud workload analyzer
	3.5.4 Resource information database
	3.5.5 Policy selector
	3.5.6 Scheduler

	4 Experimental setup and results
	4.1 Framework validation
	4.2 Simulation environment
	4.3 Comparison with other simulators
	4.4 Experimental results
	4.4.1 Compromised cost-time based (CCTB) scheduling policy
	4.4.2 Cost-based (CB) scheduling policy
	4.4.3 Time-based (TB) scheduling policy
	4.4.4 Bargaining-based (BB) scheduling policy

	4.5 Statistical analysis
	4.6 Discussions

	5 Conclusions
	6 Future directions
	Acknowledgments
	References

