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Abstract
The elasticity characteristic of cloud services attracts application providers to deploy applications in a cloud environment.
The scalability feature of cloud computing gives the facility to application providers to dynamically provision the computing
power and storage capacity from cloud data centers. The consolidation of services to few active servers can enhance the
service sustainability and reduce the operational cost. The state-of-art algorithms mostly focus either on reactive or proactive
auto-scaling techniques. In this article, a Robust Hybrid Auto-Scaler (RHAS) is presented for web applications. The time
series forecasting model has been used to predict the future incoming workload. The reactive approach is used to deal with the
current resource requirement. The proposed auto-scaling technique is designed with the threshold-based rules and queuing
model. The security mechanism is used to secure the user’s request and response to the web-applications deployed in cloud
environment. The designed approach has been tested with two real-time web application workloads of ClarkNet and NASA.
The proposed technique achieves 14% reduction in cost, and significant improvement in response time, service level agreement
(SLA) violation, and gives consistency in CPU utilization.

Keywords Auto-scaling · Cloud computing · Web applications · Resource provisioning · Time series prediction · Cloud
Security

1 Introduction

Cloud computing provides infrastructure resources, storage,
and computing through web services [55]. The large-scale
applications are mostly host and managed on Infrastructure-
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as-a-Service (IaaS) model [44]. The infrastructure is allowed
to control and manage by the users with programming [68].
This helps the application providers (APs) to deploy the
applications in a cloud environment with the quality of
service (QoS) and cost efficient [32,35]. The web appli-
cations workload is dynamic which is characterized by
flash-workload and time-varying traffic. The performance
of applications becomes a challenging job. IaaS feature of
cloud computing allows us to scale-up or scale-down the
resources on-demand to get the desired response-time for
service level agreement (SLA) fulfillment [9]. In a single-
tier application, the response time prediction is sufficient
to scale the resources [10]. However, the multi-tier appli-
cations workload is complex in nature due to the multi-tier
architecture and flash traffic [26]. Thus, the operational cost
and SLA penalty can be minimized with the autonomic
scaling process. The profiling information of low-level hard-
ware such as I/O usage, bandwidth, memory, and CPU is
used to find multi-tier web application’s bottlenecks theoret-
ically. However, sometimes it is not possible due to security
concerns of the application and, adds the complexity to vir-
tualization and decreases the performance of the application
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Fig. 1 Multi-tier scalable architecture

in cloud [21]. Furthermore, the software misconfiguration
issues are not identifiable at the low-level hardware usage.
This misconfiguration has a high impact on the response
time of the application. Therefore, we used the fine grained
and coarse-grained parameters to identify and resolve the
deployed multi-tier web applications in the cloud environ-
ment. There are N tiers in a multi-tier application, the virtual
machines are dynamically provisioned with load balancer as
shown in Fig. 1. There are heuristic methods [31,37] and
machine learning techniques [5,36,69] to scale the multi-tier
web applications dynamically. However, the variance in vir-
tual machines (VMs) performance and fluctuating traffic of
web applications make the predictive auto-scaling a tedious
job for application providers to maintain the service level
objectives (SLOs).

As per the recent trends in the era of cloud computing,
different APs host applications on the cloud instead of buy-
ing computing infrastructure. The resources are offered in
the form of VMs to APs by cloud providers like Amazon
EC2 with add-on features of scalability and pay-per-use
model [15,46,58]. The cloud providers are offered three
pricing models, named as on-demand, reservation and spot
instances. The VMs are provided at a fixed price in the on-
demand pricing model and can be acquired periodically. In
the reservation policy, APs have to fix the contract period and
price for a certain number ofVMs.Amazon introduced a spot
pricing policy for spare capacity. Amazon sells spare VMs
capacity through the bidding mechanism in an open market.
The cloud user participates in auction mechanism through
a bid defining the maximum per-unit price and VMs num-
ber and type. If the bid price is higher then the current spot
price, the resources will be allocated to the cloud user. The
spot instances can be interrupted for the number of reasons
like spot price increases than the maximum bidding price,

the capacity is no longer available, or the demand increases
for spot instances [19].

The spot instances are cost-effective and suitable for
non-time-critical applications and can be interrupted. It is
generally believed the spot instances are not suitable for
web applications because of their availability and time con-
straints.

The web APs are concerned about the dynamic fea-
tures of the web environment and different requests from
the end-users, hence static provisioning of resources is not
an efficient technique. Therefore, the current resources are
not able to cater to all the incoming requests and rise the
under-provisioning state. This, in turn, leads to delayed
response or interruption of user requests. At another end of
a situation where the traffic is reduced, the factor of over-
provisioning arises and hence leading to an increase in costs
of APs [22,58]. While considering the different models of
pricing in cloud [58,61], the minimum number of resources
are prepaid by application providers for use of a long or short
term in order to receive a discount in the rental (for exam-
ple, In EC2 reserved instances receives 75 percent discount
on rental). Thereafter, with the varying load, application
providers prefer to use the short-term rental model in order
to cover the temporary needs. However, this method requires
a highly capable mechanism for automatic determination of
capacity and on-demand resources rented as per the propor-
tion of incoming load [2].

It is essential to provide security to the user’s data which
makes the techniques robust through cloud data security.
The virtual private networks and firewalls make the system
robust along with the auto-scaling mechanism because of the
sharing of the pool of resources among different users. The
numerous state-of-the-art techniques are there for providing
security in the events in the cloud and user authentication
such as ISO-27001/27002, ITIL and PCI-DSS [25]. Two
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concerns are major in cloud security: owner’s information
is breached by the third party and second is without the
owner’s permission another person accesses their informa-
tion. These problems required a robust solution along with
an auto-scaling mechanism to make the cloud environment
the first choice of entrepreneurs to deploy their applications.

1.1 Motivation and our contributions

In this paper, we designed the Robust Hybrid Auto-Scaling
(RHAS) policy for web applications in a cloud environ-
ment. The technique is carefully designed for cost saving
along with QoS. The monitor-analyze-planning-execution
(MAPE) loop has significant features to implement the auto-
nomic scaling system to save the renting cost of computing
resources. All the features of the MAPE loop used for the
implementation of the auto-scaling technique.

The major contributions of this article is as follows:

– Thedesign anddevelopment of a hybrid analysis approach
for resource auto-scaling for Web applications in the
cloud.

– The design and development of a hybrid planning
approach for scaling decisions in cloud infrastructure.

– A series of experiments are conducted for the per-
formance evaluation of the proposed approach under
real-world workload traces for different metrics.

1.2 Article structure

The rest of this article is organized as follows: Sections 2
and 3 presents a brief overview and the state of the art of
auto-scaling techniques respectively. Section 4 presents our
proposed robust hybrid auto-scaler (RHAS) for mutli-tier
web applications in cloud computing. Section 5 provides
the performance evaluation and experimental results. Finally,
Sect. 7 presents the concluding remarks and future research
directions.

2 Background

Auto-scaling is a technique to dynamically adjust the
resources allocated to elastic applications as per the incom-
ing workloads. Auto-scaler in the cloud environment is
generic while some are application-specific to meet the
SLA, QoS and minimizing the renting cost. The auto-
scaling challenge for the web applications is to dynamically
grow or shrink the resources to meet fluctuated work-
load requirements. Autonomous scaling techniques work
without human intervention. Autonomic systems are self-
(configuring-optimizing-protecting-healing) [40]. The auto-
scaling following the MAPE-K loop: Monitoring (M), Anal-

Monitor

Analysis Plan

Execute

Managed Elements (Cloud Applications/Resources)

Knowledge

Fig. 2 K-MAPE loop

ysis (A), Planning (P) and Execution (E), knowledge(k) [13,
49] shown in Fig. 2.

1. Monitoring The monitoring system collects the infor-
mation from a cloud environment about the compliance
of user expectations, resource status, and SLA viola-
tion. It provides the state of infrastructure to the cloud
provider, and users get to know about application status
with expected SLA. Auto-scaling protocols are decided
on the basis of performancemetrics for web applications.
Ghanbari et al. [27] suggested parameters such as resize
numbers, operating interval, decision duration, decision
threshold, refractory period and instance bounds. Gener-
ally, metrics provided by cloud providers are related to
VM management; otherwise, it will be taken from the
operating system. The proxy metrics are used to reduce
the complexity of metrics such as hypervisor level and
application level (e.g., CPU utilization, workload).

2. Analysis The collected information is further processed
in the analysis phase. The current system utilization and
historical workload are combinedly used to estimate the
required resources. Some auto-scaler are working on a
reactive approach. The decision is taken after analyzing
the current system state. The threshold values are fixed
to scale in/out decisions, while others are using a reactive
approach or both. Reactive is a simple approach because
it’s always a delay between the settings of resources for
scaling decision. The VM startup time varies from 350
to 400 seconds [48]. Flash crowds and events are still a
challenge with the reactive approach.

3. Planning The analysis phase evaluates the present state,
now the planning phase has to decide to scale up/down or
scale in/out to compliance with SLA and profit trade-off.

4. Execution The execution phase is already decided in the
planning phase. Cloud providers API is responsible for
the execution of planning. The client is unaware of the
issues in the execution phase. VMs are available to users
for a certain period, the startup time of VM takes some
time, and these delays have been already discussed with
the user in resource SLA.
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5. Knowledge The knowledge to be shared among above
all four functions stored in this repository. The shared
knowledge contains metrics, historical logs, topology
information, and policies. The information passed to the
autonomic manager.

3 Related work

In the literature, the multi-tier web applications workload
is usually predicted with the help time-series approach. A
simple moving average model gives poor results [30], so the
moving average (MA) used to remove the time series noise
[43,56].Huang et al. [34] devised a resource predictionmodel
using double exponential smoothing, and simple mean and
weighted moving average (WMA) applied for comparison.
Exponential smoothing (ES) significantly gives better results
because of history records w. Mi et al. [51] applied Brown’s
double ES to predict the workload and achieve a good result
for theHTTPworkloadwith a small error.Aslanpour et al. [3]
applied double exponential smoothing (DES) and weighted
moving average (WMA) for the prediction of time series.

The auto-regression technique has also applied for work-
load and resource prediction [11,12,30,41,59]. Roy et al. [59]
used the autoregression (AR)model forworkload forecasting
by taking the previous three observations. Further response
time estimated from the predicted values. An optimization
controller applied to find resource allocation, considering
SLA violation cost, reconfiguration, and leasing resources.
Kupferman et al. [41] used AR(order 1) to forecast the
requests per second, and concluded that its performance
highly lies on many manager-defined parameters (e.g. Size
of history window, size of adaption window, monitoring-
interval length). The forecasting is determined for short-term
and long-term trends, it is highly dependent on the size of
the history window. The adaptation window determines the
future model extension.

ARMA model is a simple and efficient model to predict
future workload (number of requests). Fang et al. [23] predict
VMs CPU usage. ARIMA model is applied in various arti-
cles [7,50,60]. ARIMA required a historical workload. The
performance of the model highly depends upon the history
window. ARIMA approach is ideal for dynamic workload
such asweb applications. Sedaghat et al. [60] applied the hor-
izontal and vertical scaling to increase the benefit in terms of
cost.Mao andHumphrey [47] used the classification given as
increasing, stable, seasonal and on/off. Repacking (or recon-
figuration) of VMs to provide certain capacity, and repacking
of an application based on workload has been done. The
approach then finds the optimal pack of VMs and applica-
tions. The proposed approach is able to save 7% to 60% cost
for resource utilization. The container-based approach can
further be optimized by considering more QoS parameters.

Calheiros et al. [7] used ARIMAmodel for workload pre-
diction, and evaluate the impact on different QoS parameters.
The web application workload is dynamic and contains sea-
sonal data. The model gives 91% accuracy for non-seasonal
data, but not fit for the workload contains trend and an irreg-
ular component. This work can be further extended using an
adaptive approach for classification of workload, and design
the heuristic for ARIMA fit function for different classes. As
discussed earlier, one model doesn’t fit for all types of work-
load, Messias et al. [50] present GA based approach for time
series prediction. Traces of real workload have been used to
evaluate the prediction model. A new metric has been intro-
duced in the article named as an elasticity index (EI), which
describe the solution optimization. The range of EI varies
from (0 to 1), a value near to 1 means the solution is good.
The model gives less error as compared to other models.
This approach is taking slower with the comparison to LR
statistical model to predict the incoming request. The pre-
diction interval set by the author is 1 h. Further, this model
can be extended by mapping a few prediction techniques
with the specific application and workload pattern. The GA
model can also design, particularly for cost, energy, sharing
of resources, parameters.

The accuracy of neural network [38,57] and multiple
regression equation [6,41,57] model are highly dependent
upon on the size of input the history window. Islam et al. [38]
used more than one value from the history and got a bet-
ter result. Kupferman et al. [41] devised the necessity of a
balanced size of input history window. Regression of vari-
ous window sizes applied to find the prediction values. The
prediction interval of r is also an important factor. Islam et
al. [38] investigate the size of the interval window and found
12 min an appropriate time, because of VM startup time is
between 5 and 15 min. Prodan and Nae [57] applied the neu-
ral network to forecast the game load for 2 min. In contrast,
the neural network is better than MA and ES in terms of
accuracy.

Horizontal and vertical scaling is also an important fac-
tor considers by many authors in literature. It can be either
taken separately or in a hybrid manner also. Dutta et al. [18]
investigated that horizontal scaling has higher configuration
cost as compare to vertical scaling, but relatively gives high
throughput. The author prefers the horizontal scaling. The
regression model applied to estimate future workload. Fang
et al. [23] applied horizontal scaling (CPU and memory) to
handle the flash crowd, whereas vertical scaling applied for
irregular traffic.

Proactive time series forecasting can be combined with a
reactive approach. Iqbal et al. [37] devised a hybrid model
for auto-scaling, the author uses the reactive technique for
scale-up and a regression model for scale down. Polynomial
regression is used to calculate the number of application-tier
and database-tier VM instances.
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Many authors [8,30,62] applied the pattern identification
technique on time series analysis. Gong et al. [30] proposed
an FFT based technique to identify the matching patterns in
resource utilization (CPU, RAM, Network and I/O). Auto-
correlation, histogram, and auto-regression are used for the
comparison. Caron et al. [8] designed the algorithm with
pattern identification gives poor performance.

Resource utilization of application is also estimated with
the simple histogram in some articles by using mean distri-
bution [11], and the highest frequency in the bin [30]. The
dynamic load balancer is introduced using Holt’s approach
by using current and historical data [17]. This work can be
used with web workload, may give prediction efficiency and
load balancing issues may be resolved. The detailed compar-
ison of existing techniques mentioned in Table 1.

The researchers have proposed many techniques for
encryption and decryption [65], cloud security [39,53],
privacy-preserving, access control [20,52,67] and secured
data storage [25]. The access control to the user’s data plays
a vital role in the security of web applications in the cloud.
Mandatory Access Control (MAC), Discretionary Access
Control (DAC) and Role-based Access Control (RBAC) are
some known models used by cloud providers with a central-
ized system. Ganapathy et al. [25] proposed a secured data
storage approach to provide better security analysis. In this
article, we used the same model to enhance security in the
auto-scaling mechanism of web applications.

Time series analysis techniques are able to forecast the
future workload of web applications. Further, this infor-
mation can be used to predict resource requirements. The
technique is very appealing because of input workload is
known to the auto-scaler in advance, and have enough time
to prepare the VMs beforehand. The drawback of techniques
is the accuracy, which depends upon the input workload,
history window selection, metrics, prediction interval, and
target application. There is no best solution for all types of
time series forecasting. In this article, we have developed a
robust auto-scaling technique with a hybrid approach. The
analysis and planning phase carefully designed with classifi-
cation based prediction model TASM and reactive technique
to give QoS while saving the cost for application providers.

4 RHAS: proposed approach

Theproposed scaling approachhas beendiscussed in this sec-
tion. The MAPE loop used for the design of a robust hybrid
auto-scaling (RHAS) approach. The goal of this approach is
to estimate the required resources in horizontal scaling for
the incoming workload. The notations used in this approach
listed in Table 2.

4.1 Auto-scaling system architecture

The cloud architecture for web applications as per the
proposed approach is shown in Fig. 3. The architecture repre-
sents the communication of cloud provider (CP), application
provider (AP) and end-user. The end-users communicate to
AP via the Internet and send web applications request. The
load balancer received the request from AP and send the
request to the application tier virtual machine (VM). Gener-
ally, the multi-tier web applications have 3−tiers and each
tier provisioned on separate VM. The user request passes
through each tier to get the response. The user gets the
response after this life cycle. The auto-scaling technique
defines the required VMs for the incoming workload. This
research contributes to the auto-scaling mechanism in the
analysis, planning and execution phase. Cloud provider in
this model provides the infrastructure with different pricing
policy, e.g. Reserved and On-demand.

Algorithm 1 represents the auto-scaling mechanism used
in our approach. The first approach used is the monitoring
of resources. This approach is unique because it takes the
scaling decisions on the basis of AP defined scaling interval
(�s) in minutes. As per Algorithm 2, monitoring triggers
at every minute, and collect the infrastructure and platform
level parameters. The monitoring interval is different from
the scaling interval because the monitoring interval is a time
to collects the environment information, while, the scaling
interval defines the time to scale-up and scale-down the
resources.

Algorithm 1 The pseudo code of auto-scaling management
1: Begin � Boot the reserved VMs for incoming workload
2: while system is running do
3: for every 1 min do
4: Monitoring(); � Stores history of metrics
5: if Clock % �s = 0 then
6: Analysis(historical w of k size, history of Mu , history of

Mrt )
7: Planning(ŵt+1, Au , Art );
8: Execution(D);
9: end if
10: end for
11: end while
12: End

4.2 Monitoring phase

Auto-scaling algorithms are influenced by the dynamic
behavior of incoming workload such as seasonality, non-
seasonality or flash crowd. As per Algorithm 2, the moni-
toring phase collects the information on a regular basis (1
min) about the application and infrastructure level parame-
ters [58]. Themonitoring takes place everyminute.Application-
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Table 2 Notations used in the article

Component Description

Art
t Analyzed response time in last minute

Au
t Analyzed CPU utilization during �s

Clock Simulation timer

D Scaling decision (e.g. ScaleUp, ScaleDown, DoNothing)

k Size of sliding window

Mrt
t Average response time at time t

Mu
t Average CPU utilization at time t

RT lowThr Lower threshold in response time

RT uprT hr Upper threshold of response time

Srt Response time as per SLA

SL AV Total SLA violation in an hour

�s Scaling Interval

sw sliding window of size k

T Throughput in last minute

UlowThr Lower threshold in CPU utilization

UuprT hr Upper threshold of CPU utilization

V MAL Total virtual machines V MP and V MS

V MF Virtual machines required in future as per ŵt+1

V Mmax maximum on-demand VMs scaling limit

V MP Pending virtual machines list

V MS In service virtual machines list

wt Requests received at time t

ŵt+1 Analyzed future incoming request at time t

wt Request answered at time t

level parameters are an end-user request (w), while infras-
tructure level parameters are the number of resources and
their utilization. The response time is representing the SLA
parameter. The monitoring module record the request arrival
rate, capacity available and capacity utilized using the control
domain.

The response time of each request is calculated as per Eq.
1. In CloudSim, the cloudlet refers to the job submitted to the
cloud datacenter. Further, the average response time calcu-
lated as perEq. 2.Where FinishT ime is the completion time
of cloudlet as perClock, the ProcessedT ime represents the
time taken for cloudlet processing and ArrivalT ime is the
submission time of cloudlet as per Clock.

ResponseT ime = FinishT ime − ProcessedT ime

− ArrivalT ime (1)

Mrt
t =

∑TotalCloudletsFinished
j=1 ResponseT ime j

T otalCloudletsFinished
(2)

The average CPU utilization is calculated as per Eq. 3.
V MAL is the sum of in-service virtual machines (V MS) and,

pending virtual machines (V MP ).

Mu
t =

∑V MAL

j=1 V MjUtili zation

V MAL
(3)

Algorithm 2 The pseudo code of monitoring phase
1: /* User behavior parameters */
2: Store wt � Incoming workload (1 minute)
3: /* Infrastructure and platform level parameters */
4: Store V MP , V MS � VM parameters
5: Store Mrt

t and Mu
t � SLA parameters and Resource Utilization

4.3 Analysis phase

In our previous work, the proactive analyzer designed named
the technocrat ARIMA and SVR model (TASM) time series
approach with pattern discrimination in the sliding window
of incoming requests [63]. In this paper, a new hybrid anal-
ysis method is presented with a combination of reactive and
proactive analysis techniques. According to Algorithm 4, the
proactive section (line no. 4) of analyzer design with the
TASM to predict the highest value of incoming workload in
a minute for the next scaling interval. The reactive section
(line no. 6) is analyzed theCPUutilization and response time.

Algorithm 3 The pseudo code for WorkloadPredictor
1: Input: predictionModel, sw (requests per minute from the past �k

minutes)
2: Output: ŵt+1

3: Calculate the Average Rate of Change (ARC) = y2−y1
x2−x1

4: Calculate the l2-norm |x | =
√
x21 + x22 + ... + x2n

5: if ARC < l2 − norm then
6: Apply ARIMA Model (Non-Seasonal)
7: Apply Ljung Box test for Independent Residual
8: if Residuals are Independent and lower RMSE then
9: Apply the Seasonal Study
10: else
11: Apply the Linear Regression (LR) Model
12: end if
13: else if Apply Teravirta Test to check, is the series linear? then
14: Apply the LR Model
15: Perform the Evaluation
16: Apply the Seasonal Study
17: else Apply the Support Vector Regression (SVR) Model
18: Perform the Evaluation
19: Apply the Seasonal Study
20: end if

Firstly, the future arrival rate ŵt+1 is calculated using
the workload prediction as described in Algorithm 3. The
sequence of values (wt ) captured during time interval (�s)
with monitoring phase. The time sequence is represented
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Fig. 3 The cloud architecture for web applications

with ws = (
w1
t , w

2
t , ...., w

k
t

)
. The ŵi+1 is calculated by

TASM prediction model (line no. 5), the process shown in
Figure 4.

Secondly, the average CPU utilization of VMs calculated
for every minute in the scaling interval (line no. 7 to 9).
The CPU utilization has been calculated as per Eq. 3. Fur-
thermore, the average CPU utilization during the last scaling
interval calculated (line no. 10) as per Eq. 4.

Thirdly, the response time is collected as an SLA param-
eter during the last minute collected from the monitoring
phase. The response time is calculated as per Eq. 1. After-
ward, the average response time is calculated usingEq. 2. The
average response time is a QoS indicator. In this approach,
we have considered the analyzed response time Art

t , it is the
average response time in the last minute (Mrt ) (line no. 11).
This way, we gave the highest priority to the response time
experienced at the last minute.

Au
t =

∑k
t=1 M

u
t

k
(4)

4.4 Planning

The planning phase makes decisions using reactive and
proactive auto-scaling techniques. The reactive approach
provided the support for the flash workload. The reliabil-
ity of predictive analysis is still in doubt because all the time
workload doesn’t depend upon the historical workload. If the
available resources do not meet the sufficient requirement,
this approach adds the resources from the pool of resources.
This approach ensures that the available capacity should be
higher than the required capacity.

According to Algorithm 5, the analyzed CPU utilization
(Au) and analyzed response time (Art ) evaluated with the
threshold rules. If the analyzed CPU utilization is greater
than the CPU utilization upper threshold value and analyzed
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Algorithm 4 The pseudo code of hybrid analysis approach
(Proposed)
1: Input: Mu (duration is the last�s minutes), Mrt (duration is the last

minute), sw (requests per minute from the past �k minutes)
2: Output: ŵt+1, Au and Art

3: Variable: double cpuUtili zation ← 0, string
predictionModel ← T ASM

4: /* Proactive Section */
5: ŵt+1 ← WorkloadPredictor(predictionModel, sw) � Predict the

future arrival rate 3
6: /* Reactive Section */
7: for i = 0 to i < �s do
8: cpuUtili zation ← cpuUtili zation + Mu

t−i−�s
9: end for
10: Au ← cpuUtili zation/�s � Average CPU utilization in �s

minutes
11: Art ← Mrt � Response time of last minute
12: return ŵt+1, Au and Art

response time is greater than the upper threshold value of
response time then (line no. 4), an immediate ScaleUp deci-
sion takes place (line no. 5). No further consideration will
take place and return (line no. 6). If the analyzed CPU utiliza-
tion is lower than the CPU utilization lower threshold value
and analyzed response time is less than the lower threshold
value of response time then (line no. 7), the ScaleDown
decision set on a temporary basis (line no. 8). This decision
further filtered through the proactive section (line no. 10)
then the final decision will take place.

V MF =
[

ŵt+1

RT SLAµ

]

(5)

The prediction section (line no. 10) applied the queuing
model to calculate the number of VMs to serve the incoming
workload is the next scaling interval (line no. 11). It takes
three arguments future incoming request, processing rate (µ)
and RT SLA is response time as per SLA. If the required
capacity is less than the future capacity than the ScaleUp
decision takes place (line no. 13). Afterward, if the desired
capacity is the sameas current capacity than thedecisionmust
be DoNothing (line no. 15), otherwise, we continuewith the
decision of reactive auto-scaling that was ScaleDown.

The predictive auto-scaling used for the short-term pre-
dictable workload and the reactive auto-scaling is applied
for less predictable fluctuations in the incoming workload.
The state under-provisioning and over-provisioning of the
resources is known as resource oscillation in cloud comput-
ing. The predictive approach ready the VMs before incoming
workload and reactive technique overcome the prediction
error by taking immediate scaling decisions in case of
resource oscillation in the cloud environment.

Algorithm 5 The pseudo code of hybrid planning approach
(Proposed)

1: Input: Au , Art , UlowThr , UupThr , RT lowThr , RT upThr , ŵt+1
2: Output D
3: /* Reactive Scaling */
4: if Au > UupThr and Art > RT upThr then
5: D ← ScaleUp
6: return D
7: else if Au < UlowThr and Art < RT lowThr then
8: D ← ScaleDown
9: end if
10: /* Proactive Scaling */
11: V MF ← QueuingModel(ŵt+1, µ, RT SLA) � Queuing model

M/M/m estimates the future capacity
12: if V MAL < V MF then
13: D ← ScaleUp
14: else if V MAL == V MF then
15: D ← DoNothing
16: end if
17: return D

4.5 Execution

The execution phase action depends upon the interpretation
of the planner. This phase takes the final decision for the
scaling up, down or do nothing, and put a request to CP. The
default executor selects the machines randomly for scale-
up/down from the resource pool. This phase cross-validate
the on-demand virtual machines limit before the scale-up
decision, if the limit-exceeding, it will deny the scale-up deci-
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sion. Similarly, if the on-demand limit reaches zero no further
request will be entertained.

4.6 Security of cloud applications

The features in cloud architecture provides various facilities
for a web application to acquire the resources in demand
and better cost for operations. However, these features arise
numerous concerns about security. As the cloud is a multi-
domain environment, so the users can have different trust
and security requirements. The cloud provides this facility
through Service Oriented Architecture (SOA) to compose
the services as per the requirement. In this section, we used
the Chinese Remainder Theorem (CRT) [66] based privacy-
preserving and secured storage for web application as shown
in Fig. 5.

Ganapathy et al. [25] proposed a new privacy-preserving
and secured storage model. This model performance is best
among the state-of-the-art algorithms. In this work, we have
used that algorithm to secure the storage and communication
of web applications in cloud data centers. There are six com-
ponents in this architecture includes key generation model,
secured data storage model, decision manager, data collec-
tion module, cloud database, and user interface as shown in
Fig. 5. The user interface module serves as a primary com-
ponent of data request/response and storage. The data of the
user either store as simple or ciphertext. The data collected
from the decisionmanager and user interface is performed by
the data collection module. The system architecture compo-
nents are controlled by the decision manager. Furthermore,

the encryption of data accomplished at the data storage mod-
ule. The collection module encrypts or decrypts data to store
in a cloud database. Although, the user can request through
the data collectionmodule forwarded for key generation. The
decisionmanager is responsible for the distribution of keys to
the users. The specific user is then able to access the required
data from the cloud database. The detailed working can be
referred from the article [25].

5 Performance evaluation

The goal of the present study is to develop the robust
auto-scaling approach for application provider by hybrid
auto-scaling approach with essential security features. The
experiment has been performed in summarized as follows:

– The prediction models linear regression (LR), support
vector regression (SVR), autoregression (AR), moving
average (MA), autoregressive moving average (ARMA),
autoregressive integratedmoving average (ARIMA), and
TASM implemented in R tool and comparison made for
1 min short term prediction for real workload traces.

– The existing and proposed techniques implemented in
Cloudsim and observation made for auto-scaling deci-
sions.

– The performance metrics: response time and CPU uti-
lization are observed during the experiment.
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Table 3 Summary of datasets
information

Dataset name ClarkNet NASA

File name Aug28log, access1 accesslogAug95

File size 171.0 MB, 172.5 MB 167.8 MB

Length (s) 3, 328, 587(14days) 3, 461, 612 (28 days)

Timestamp resolution 1 second 1 second

Sampling interval 1 min 1 min

Number of samples 2880 (2 days) 2880 (2 days)

– The comparative analysis performed on VM allocation,
SLA violation, renting cost of proposed and existing
methods to validate the robustness and efficiency.

5.1 Experimental setup

The comparison of the proposed model is performed on
the CloudSim toolkit. The prediction model is implemented
in the R tool. R caller library is used to integrate R API
in the CloudSim toolkit. The various existing auto-scaling
approach mentioned as RightScale threshold rules-based
technique [1], AR [41], SVR [54], ARIMA [7], TASM [63]
compared with proposed approach in terms of response
time, number of VMs allocated and resource utilization. The
RHAS provides maximum resource utilization percentage
and minimum response time.

The workload used in the experiments are mentioned in
Table 3. The experiment is conductedwith the cloud provider,
application provider and end-user entities.

5.1.1 Cloud provider

CloudSim provides the ability for the cloud provider. The
classes are added for resource rental and cost management.
Time-shared scheduling is used for the experiment purpose.

5.1.2 Application provider

Application providers host the application in cloud infras-
tructure. The on-demand resources have a significant delay
in the startup of virtual machines [33]. The interesting study
is conducted and show that VM startup delay varies depend-
ing on the factors such as VM request time, VM size and day
of the week. However, in simulation, some considered as the
normal distribution or fixed number. In our experiment, we
considered the VM startup delay as fixed for 5 min. Accord-
ingly, hybrid auto-scaler took scaling decisions after every
10 min with the highest priority to reactive scale-up.

5.1.3 End user

The emulation of ClarkNet and NASAworkload incorporate
to AP for the web application requests. These workloads are
used by various auto-scaling performance evaluations [4,42,
45,50]. The input workload is mentioned in Table 3.

6 Results and discussion

The performance evaluation is performed against 6 metrics
as follows:

6.1 Prediction accuracy of time series models

The cloud infrastructure parameters such as CPU utilization,
response time and request arrival rate are collected. The pre-
diction of future requests performed using the TASMmethod
on the basis of classification model [63]. The sliding window
is used to capture the latest request in the history and on the
basis of the classification approach, prediction models are
applied. Linear and non-linear models are applied to capture
the various types of trends in the incoming workload. The
proposed model shows the less difference in incoming work-
load and predicted workload, thus feasible to implement in
a cloud environment for web applications. In the previous
work, we tested the prediction accuracy of 10 minutes dis-
crete series. In this experiment, we have tested the discrete
series of 1 min shown in Fig. 6 for the ClarkNet series and
Fig. 7 for theNASAseries. So, that highest in predictedwork-
load in 1 min from the upcoming scaling interval choose,
which can decrease the SLA violation and proper resource
utilization.

The accuracy of the prediction model is calculated using
Root-Mean-Square-Error (RMSE) and Mean-Absolute-
Percentage-Error (MAPE). The standard metric for RMSE
and MAPE as specified in Eqs. 6 and 7 respectively mention
in Table 4 for ClarkNet series and Table 5 for NASA series.
It has been observed that the prediction model gives better
accuracy with long-term workload forecasting. During the
experiment, when we performed the short-term prediction
(e.g. 1 min), most of the prediction models fail to give ade-
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Table 4 Accuracy of prediction models for ClarkNet workload

Prediction model RMSE MAPE

LR 64.37 34.52

SVR 64.67 32.95

AR 54.60 30.42

MA 59.24 33.14

ARMA 59.25 32.98

ARIMA 51.24 26.64

TASM 42.24 20.63

Table 5 Accuracy of prediction models for NASA workload

Prediction model RMSE MAPE

LR 16.56 66.77

SVR 17.0 67.93

AR 14.09 56.32

MA 15.72 62.40

ARMA 15.23 60.37

ARIMA 13.37 52.68

TASM 11.01 39.21

quate accuracy. Thus, the need for hybrid auto-scaling arises,
which can further evaporate the prediction errors using the
reactive technique.

RMSE =
√
√
√
√ 1

n

n∑

s=1

(
actualWorkloads − predictedWorkloads

)2

(6)

MAPE = 1

n

n∑

s=1

∣
∣
∣
∣
actualWorkloads − predictedWorkloads

actualWorkloads

∣
∣
∣
∣

× 100% (7)

6.2 VM allocation

The difference between the number of resources estimated
and consumed are calculated to analyze the performance of
proposed hybrid analysis and planning phase. The experi-
ment is performed on the first two days discrete model of the
ClarkNet and NASA time series. The analysis phase perfor-
mance is shown in the accuracy of the prediction model and
found the TASM gives better performance for web applica-
tions workload prediction as compared to other prediction
models. The planning phase experiment has been conducted
on two datasets: ClarkNet and NASA. The first experiment is
conducted with the proactive auto-scaling using TASM with
ClarkNet shown in Fig. 8 and proposed model result shown
in Fig. 9. The second experiment is conducted on NASA
workload with proactive TASM and proposed auto-scaling

approach shown in Figs. 10 and 11. The TASM prediction
model is able to predict future demand in peak hours and
normal hours. Still, resource oscillation is there due to pre-
diction error. The AP renting VMs as per demand and release
with mitigation of workload. The calculation performed in
minutes from demand to release of VMs. The elevated length
indicates provisioning stability. The stabilization is observed
in the robust planning approach.

The third and fourth experiments are conducted on the
6th and 7th day of ClarkNet and NASA time series for scal-
ing overhead. The experiment results are shown in Figs. 12
and 13. The proposed planning algorithm further reduces the
over-utilization and under-utilization up to 16%.

6.3 CPU utilization

The CPU utilization is referred to as the work handled by
the CPU of VMs deployed for the web application in a cloud
environment. The performance ofRHAShas been testedwith
CPU utilization metrics. This is the percentage of current
CPUusage during the processing of user’s requests. TheCPU
utilization is tested against the threshold-based and proac-
tive technique. The experiment results shown in Fig. 14 for
ClarkNet series and Fig. 15 for NASA series. The threshold
(TR) based technique is able to achieve higher CPU utiliza-
tion in the ClarkNet workload model, but due to the scaling
interval of 10min the performance of the TR technique is just
42%. The proposed technique is the mixed approach of reac-
tive and proactive technique, thus able to give a consistent
performance of 90% CPU utilization.

6.4 Response time

Response time is the elapsed time between the request sub-
mitted to the request-response. The response time of the web
application must be quick. In this experiment, the desired
response time has agreed to 1 s as per SLA. The minimum
response time is a parameter of quality of experience (QoE)of
each user request. Figures 16 and 17 are the result of average
response time for ClarkNet and NASA workload respec-
tively. The proposed method has a relatively low response
time and showing the RHAS is adapting the dynamic work-
load.

6.4.1 SLA violation

The SLA agreement is an important aspect which ensures
the maximum availability of cloud services to the end-users.
The CP has to pay a penalty in case of an SLA violation. The
SLA violation is calculated as per equation Eq. 8.
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Fig. 8 ClarkNet series VM required and allocated using proactive scaling
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Fig. 9 ClarkNet series VM required and allocated using proposed RHAS
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Fig. 11 NASA series VM required and allocated using proposed RHAS

Fig. 12 ClarkNet series scaling
overhead
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Fig. 13 NASA series scaling
overhead
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Fig. 14 ClarkNet series average
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Fig. 15 NASA series average
CPU utilization
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Fig. 16 ClarkNet series average
response time

0
0.5

1
1.5

2
2.5

3
3.5

4

Rule 
Based 

Technique

AR LR SVR MA ARMA ARIMA TASM RHAS

Av
g.

 R
es

po
ns

e 
Ti

m
e

Auto Scaling Techniques

ClarkNet Series Average Response Time
Response Time

Fig. 17 NASA series average
response time
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SL AV =
w∑

i=1

RTi − Srt (8)

TheSLAviolation is ofClarkNet andNASAseries experi-
ment results shown in Figs. 18 and 19. The experiment results
show that the proposed technique is experienced a 1% SLA
violation. The end-user will experience the QoS for their
application accessibility.

6.4.2 Renting cost

The on-demand resources are rented as pay per use principal.
The cost of renting is calculated hourly basis as per Amazon
EC2. It is the sum of all the resources after ceiling each VM
utilization hours. The different rates of penalty are defined for

different QoS requirement [28]. The total cost is calculated
as per Eq. 9.

Cost = Rentingcost + SL Apenaltycost (9)

Rentingcost = ExecutionT imei × Price (10)

Delaytime = Estimated f inishtime

− Actual f inishtime (11)

PenaltyCost =
C∑

i=1

(Penaltyminimm

+ PenaltyRate × |DelayT ime|)i (12)

The experiment results are shown in Fig. 20 for ClarkNet
series renting cost and 21 for the NASA series renting cost.
TheSLAviolation leads to the penalty to the service provider.

123



Cluster Computing

Fig. 18 ClarkNet series SLA
violation
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Fig. 19 NASA series SLA
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Fig. 20 ClarkNet series overall
cost
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Fig. 21 NASA series overall
cost
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Fig. 22 Security level analysis

The proposed model is cost-efficient for the AP in terms of
renting cost and minimum SLA penalty.

6.5 Security analysis

The security level analysis is conducted with AES, DES,
cloud with IoT model [16] and CRT-based Secure Storage
Algorithm (CRTSSA) [25]. The size of the file varies to per-
form the different experiments on these algorithms. Figure 22
shows the security level analysis of various algorithms. It has
been observed that the CRT key generation and CRTSSA
gives an outstanding performance. The encryption process
designed such away that it makes our proposedRHASmodel
robust by raising the security level of web applications in
cloud data centers.

It is important to mention that the proposed RHAS auto-
scaling technique is a robust approach, which gave an
efficient and fair amount of QoS to the end-users, and equally
provides cost benefits to the AP. It minimizes the renting cost
with reduction in SLA penalty. The end-users get QoE with
justified response time as per SLA.

7 Conclusions and summary

In the cloud environment, the web application providers face
the issue of irregular load fluctuation, this further leads to
the uncertain scaling decision. In this paper, we designed
the robust auto-scaling technique (RHAS) with hybrid anal-
ysis and planning approaches for web applications in cloud
infrastructure. The proposed technique provides benefits to
the auto-scaling with cost and QoS parameters. The simula-
tion result shows the benefits in renting cost and reduction
in SLA violation. It also gives a fair amount of CPU utiliza-
tion. As a result, it has been clear that apart from response
time, other parameters such as the number of requests and
CPU utilization are also equally important in scaling deci-
sions. The CRT-based secure storage provides better security
to the user’s request and response for web applications. The

experiment results demonstrates that the proposed RHAS
auto-scaling approach reduce the cost upto 14%, response
time upto 18%, and SLA violation upto 25%. Furthermore,
it also achieves the rise in security level from 2% to 4%. The
robust hybrid scaling approach can provide benefits to appli-
cation providers in terms of cost and equally gives QoE to
the end-user.

7.1 Future directions and open challenges

In the future, we shall explore the applicability of the present
model/technique and any potentially needed extensions in
the following main directions.

1. Dynamic scalability Further, the dynamic scalability
can be incorporated [14], which can provide operational
capabilities to improve performance of cloud comput-
ing applications in a cost-effective way, yet to be fully
exploited [33].In addition, the vertical scaling strategy
can be designed to overcome the challenge of startup
delay of VMs [70].

2. Mobile cloud computing In future, implement dynamic/
real-time offloading techniques for energy conservation
in hybrid Fog-Cloud setups usingRHAS. Further, there is
a need to perform offloading using Mobile Cloud Com-
puting for mobility and energy-aware based offloading
and task scheduling decision.

3. Edge and fog computingWe can extend our model from
cloud computing to another emerging computing models
such as fog and edge to reduce the latency and response
time of cloud applications dynamically [29].

4. Internet of Things Extending auto-scaling across the
compute continuum from IoT devices to cloud in order
for timely execution/processing of scaling decisions is a
challenging problem that needs to be addressed [29].

5. Blockchain Auto-scaling utilizing Blockchain capabil-
ities such as Smart SCs in order for addressing first
security concerns and second unsolved monetization
problem in federated cloud for services provided in col-
laborative computing is a new challenge [29].

6. Adaptive predictionmodel In futurework, theAI-based
adaptive prediction model can be designed to predict the
number of the requests as per the desired response time
of SLA within the scaling interval [29].

7. Artificial intelligence (AI) Self-correction prediction
and multi-objective auto-scaling using AI for the trade-
off between performance and cost can be accomplished
usingDeepLearning.Recently, deep learning, i.e. automa-
tion of predictive analytics-a subset of AI-has gain more
attention for solving the problems which have not been
yet solved [29,64].
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