
Serverless Edge Computing: Vision and Challenges

Mohammad S. Aslanpour ∗

Faculty of Information Technology,
Monash University
CSIRO’s DATA61

Australia
mohammad.aslanpour@monash.edu

Adel N. Toosi†
Faculty of Information Technology,

Monash University
Australia

adel.n.toosi@monash.edu

Claudio Cicconetti‡
IIT – National Research Council

Italy
c.cicconetti@iit.cnr.it

Bahman Javadi§
Western Sydney University

Australia
b.javadi@westernsydney.edu.au

Peter Sbarski¶
A Cloud Guru

Australia
pete@acloud.guru

Davide Taibi∥
Tampere University

Finland
davide.taibi@tuni.fi

Marcos Assuncao∗∗
Inria, ENS de Lyon

France
marcos.dias.de.assuncao@ens-lyon.fr

Sukhpal Singh Gill††
Queen Mary University of London

United Kingdom
s.s.gill@qmul.ac.uk

Raj Gaire††
CSIRO’s Data61

Australia
raj.gaire@data61.csiro.au

Schahram Dustdar††
Distributed Systems Group, Vienna

University of Technology
Austria

dustdar@dsg.tuwien.ac.at

ABSTRACT
Born from a need for a pure “pay-per-use” model and highly scalable
platform, the “Serverless” paradigm emerged and has the potential
to become a dominant way of building cloud applications. Although
it was originally designed for cloud environments, Serverless is
finding its position in the Edge Computing landscape, aiming to
bring computational resources closer to the data source. That is,
Serverless is crossing cloud borders to assess its merits in Edge
computing, whose principal partner will be the Internet of Things
(IoT) applications. This move sounds promising as Serverless brings
particular benefits such as eliminating always-on services causing
high electricity usage, for instance. However, the community is
still hesitant to uptake Serverless Edge Computing because of the
cloud-driven design of current Serverless platforms, and distinctive
characteristics of edge landscape and IoT applications. In this paper,
we evaluate both sides to shed light on the Serverless new terri-
tory. Our in-depth analysis promotes a broad vision for bringing
Serverless to the Edge Computing. It also issues major challenges
for Serverless to be met before entering Edge computing.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ACSW ’21, February 1–5, 2021, Dunedin, New Zealand
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8956-3/21/02. . . $15.00
https://doi.org/10.1145/3437378.3444367

ACM Reference Format:
Mohammad S. Aslanpour, Adel N. Toosi, Claudio Cicconetti, Bahman Javadi,
Peter Sbarski, Davide Taibi, Marcos Assuncao, Sukhpal Singh Gill, Raj
Gaire, and Schahram Dustdar. 2021. Serverless Edge Computing: Vision and
Challenges. In Australasian Computer Science Week Multiconference (ACSW
’21), February 1–5, 2021, Dunedin, New Zealand. ACM, New York, NY, USA,
10 pages. https://doi.org/10.1145/3437378.3444367

1 INTRODUCTION
The emergence of cloud computing was a huge step towards the
paradigm of computing as a utility. On-demand resources along
with seamless auto-scaling drastically reduced the management
costs and improved the Quality of Service (QoS) experienced by end-
users [7]. Nonetheless, there were burdens to accomplish a pure pay-
per-use model and effortless scalability. Customers had to pay based
on the allocated resources, not the resources actually consumed.
Scalability was the problem of the customers, they had to configure
autoscalers based on their load profile and the characteristics of
their application; otherwise, they had to rely on general-purpose
auto-scalers provided by cloud offerings, which by necessity could
not be efficient for all kinds of (complex) deployments. The industry
and research community were not silent and decided to remove
those burdens.

On the development side, advances were rapid by moving from
monolithic to service-oriented and then microservices application
architecture. This move recognized the possibility of running small
pieces of code as functions, leading to today Function-as-a-Service
(FaaS) [8]. On the deployment side also the community was actively

https://doi.org/10.1145/3437378.3444367
https://doi.org/10.1145/3437378.3444367

ACSW ’21, February 1–5, 2021, Dunedin, New Zealand Aslanpour and Toosi, et al.

investigating ways to relieve the burden carried by heavyweight
virtualization, hence containerization came to accomplish it [22].
Well-timed, Serverless appeared. Serverless attended the reunion
between technological advances such as microservices, FaaS [42],
event-driven programming, containerization, and the idea of pure
pay-per-use model. Performing well in cloud, it is expected that
"Serverless will dominate the future of cloud computing” [22].

Demonstrating common features with the requirements of Inter-
net of Things (IoT) applications, now the adaptation of Serverless
in edge computing has attracted special attention both from public
cloud providers and academia [4]. Edge computing refers to lever-
aging computation-enabled devices located at the edge of network.
Devices can be conventional computer servers or sensor/actuator
IoT devices augmented with computations such as Single Board
Computers (SBCs), deemed as edge nodes, or a hybrid of both [28].
Although in its infancy, as one of its ultimate goals, edge computing
is intended to enable computing on resource-limited devices and to
reduce latency and bandwidth for IoT applications, as the biggest
stakeholders [16, 28].

The main questions of this research include: “Is Serverless adapt-
able to edge computing? and how?” In principle, its scale-to-zero
property (i.e., unused containers are deallocated from the platform)
suits very well energy-aware IoT use cases with intermittent ap-
plications, while fine-grained scaling (i.e., at a function level) may
easily accommodate the vastly heterogeneous requirements and
execution environments at the edge. In fact, many IoT applications
are based on events triggered through sensing/actuating, which is
similar to the way functions in Serverless are triggered, and quite
often they sense/actuate only occasionally while sleeping most of
the time, instead of being always-on and wasting the energy, which
is inline with the promise of ephemeral functions in Serverless,
too [8]. Thus, at a first glance, Serverless looks like a near-perfect
execution model. However, this is challenging due to the fact that
Serverless has been originally designed for cloud environments
which do not suffer from the limitations as computation devices at
the edge [28].

Motivated by this potential, we identified the key gaps of inte-
grating Serverless, edge computing and IoT applications. This is
important to be filled as the reality is that although this adaptation
appears essential and effective, its feasibility demands thorough
investigations to avoid repercussions. Our goal is to fill this gap by
expressing our early thoughts on identifying potential opportuni-
ties and steps which are needed to be taken to accomplish Serverless
edge computing.

Our methodology is based on experts’ collaboration and liter-
ature review. We brought together a group of active and expert
researchers and practitioners in Serverless, edge computing and
IoT domains to share their knowledge and critical thoughts on the
topic. The result and key contributions include: a (1) simplified
paradigm followed by a comprehensive list of (2) opportunities
and (3) challenges facing Serverless edge computing identified and
agreed by these experts.

The reminder of the paper is structured as follows. After giving
a broad background on Serverless and edge computing in Section 2,
we demonstrate the expected Serverless edge computing paradigm
in Section 3. Following that, we categorize and discuss the opportu-
nities as well as open issues in realizing the paradigm in Sections 4
and 5, respectively. We draw the final conclusions in Section 6.

2 BACKGROUND
2.1 Serverless
After the emergence of on-demand services in cloud, a pure pay-per-
use model along with effortless scalability were missing. Customers
had to implement their own auto-scaling methods, unless they
decided to rely on general-purpose auto-scalers provided by cloud
offerings. Further, immature monolithic application architecture
and heavyweight virtualization were imposing substantial burdens.

Meanwhile, service-oriented architectureswere evolving towards
what we call microservices, i.e., small loosely coupled systems that
are easier to deploy, manage, and monitor. Following that, decom-
posing applications into small pieces of codes acting as the basic
unit of computation called functions became easier and led to to-
day’s FaaS [42]. This whitebox approach allows the controller to
optimize intermediate subsets of the application, which is usually
not possible in monolithic application deployments. Yet, the depen-
dency and interaction between functions can exist and addressed
by function composition practices. Functions can be composed to
create more complex services [39]. Following this, Event-driven
programming found its position in microservices to further en-
able fine-grained development and interaction of microservices,
respectively. Due to their event-driven nature and subsequently
distributed components, the necessity of automation and CI/CD (i.e.,
continuous integration and continuous deployment) were recog-
nized as well. Finally, while the true potential in cgroup mechanism
in Linux for isolating processes and resources was unseen for years,
it became the starting point to realize today’s containerization. Con-
tainers, led by Docker, enabled implementation of microservices as
they became more popular.

Nonetheless, a technology to combine all theses advances and
to fulfill a pure pay-per-use and effortless scalability was still miss-
ing, until Serverless Computing came into the picture. Serverless is
one step forward in the abstraction staircase from Infrastructure-
as-a-Service (IaaS) to Platform-as-a-Service (PaaS), since it offers
customers a platform that allows the execution of software without
providing any notion of the underlying Operating System (OS), not
even in a virtualized manner, VM or container alike [34]. Therefore,
not only the burden of monitoring the servers, but also that of man-
aging the life-cycle of VMs and their images, is entirely assigned
to the Serverless provider. In other words, Serverless attended the
reunion between technological advances such as microservices,
FaaS [42], event-driven programming, containerization, and the
idea of pure pay-per-use model along with effortless scalability [34].

After its announcement by Amazon, the AWS Lambda gained
considerable attention and following that other big IT companies
took their Serverless platforms to the market. Microsoft, Google,
IBM and Oracle announced Azure Functions, Google Cloud Func-
tions, IBM Cloud Functions and Oracle Fn, respectively to pene-
trate into the growing market. Given the strong trends towards
open collaboration, soon IBM (with OpenWhisk) and Oracle (with
Fn project) released their open-source platform. Following that,
Amazon Web Services (AWS) did so and currently their innovative
Serverless platform, which is running microVMs by Firecracker, is
open-sourced. The research community has also been actively de-
veloping easy-to-use platforms such as OpenFaaS, Fission, Kubeless,
Knative, IronFunctions, etc.

Serverless Edge Computing: Vision and Challenges ACSW ’21, February 1–5, 2021, Dunedin, New Zealand

To compare and draw an analogy between these projects, one
can refer to their support for (1) variety in programming languages,
(2) function triggering methods (e.g., HTTP, MQTT or cloud event),
(3) cost and free tier offers, (4) resource provisioning and scaling
specifications (e.g., CPU, memory or both), (5) function composi-
tion and communication patterns, and (6) resource abstractions or
virtualization (e.g., containers or microVMs).

Serverless appears as a new technology for several enterprises to
employ. The efficient deployment and organization of FaaS might
not be easily available. Understanding this obstacle, Serverless
frameworks such as SAM, Chalice, Serverless.com, etc. have ap-
peared to help. Apart from this, the feasibility of deploying open-
source platforms on the edge is highly debated due to their com-
plexity and edge nodes’ limitations [35], leading existing platforms
to make themselves further portable and easy to deploy. An exam-
ple of such portability is faasd, where OpenFaaS released a lighter
version whose seamless implementation on SBCs such as Raspberry
Pis is verified1. Along with these activities, cloud providers are also
offering Serverless at the edge by services such as AWS Greengrass
or Lambda@Edge provided by AWS.

2.2 Edge Computing
With the ever-increasing growth of IoT applications, the community
was required to devote extra effort to address their requirements.
Requirements include, but not limited to: low latency, real-time ex-
ecution, event-driven developments, and efficient deployments [3].
Cloud computing with powerful computations could be the first
available option, but cannot seem to satisfy all IoT requirements
such as low latency due to being far away from data sources [7].
With IoT requirements and cloud struggle, the edge computing (or
so-called fog computing) landscape is proposed as an complemen-
tary option [17]. With edge, the computation is closer to data source
and real-time execution will be closer to accomplishment. Of course,
edge resources are limited, but edge nodes will benefit from the
distributed nature of edge to share resources and provide an ample
pool of resources. Most importantly, IoT default sensing/actuating
functionalities can expand to computation as well, enabling them to
act as edge nodes. SBCs like Raspberry Pis, Beagles, PandaBoard, or
even NVIDIA Jetson Nano are perfect examples of such advances.

Nonetheless, the potential benefits of edge computing can be
obtained only if efficiently designed, implemented and deployed.
Otherwise, energy- and computation-limited edge nodes are ex-
tremely vulnerable [28]. Firstly, if designed to rely on a central
node while in a distributed network of IoT devices, it will fail, as
edge computing is disposed to unwanted failures while powerful
cloud data centers would not suffer from such constraints [28].
Secondly, if implemented using heavyweight resource abstractions
such as VMs which occupy huge amount of available resources
and containerization is ignored, it will fail to properly function and
scale due to lack of space and lazy scalability, respectively which
were not so problematic in cloud; Thirdly, if deployed as always-on
applications on energy-limited edge nodes, the promise of edge
computing will not probably fulfilled, and running in a event-driven
manner on cloud may be even more efficient.

Overall, edge computing facilitates the process of shift from an
cloud-only paradigm for IoT applications to a fully distributed cloud
1https://blog.alexellis.io/faasd-for-lightweight-serverless/

to edge continuum landscape. Motivated by edge-side challenges
and above-mentioned characteristics of Serverless, it appears the
integration of Serverless and edge computing for IoT applications
will be an effective solution which will be discussed in the following
section.

3 SERVERLESS EDGE COMPUTING
PARADIGM

Despite agreed signals on adapting Serverless-enabled edge com-
puting, estimations show that, by 2017, IoT constituted less than
6% of Serverless use cases2, and by 2020 it does not exceed beyond
10% [14]. Given the exponential growth of IoT market during re-
cent years, such a slow adaptation and limited share of Serverless
appears suffering from serious obstacles and ignorance of required
changes in the perspective. It also seems that the question posed
by Baldini et al. [5] in 2017 has remained unanswered yet, “Does
serverless extend beyond traditional cloud platforms?” After Bal-
dini’s alert [5], feasibility of Serverless for IoT applications has
incoherently been examined. Examples include: real-time data ana-
lytic [32], Transportation Planning [21, 38] and data processing [37],
to name a few. In industry sector, the first commercial endeavour
was Lambda@Edge offered by AWS in mid-2017, but critics [6]
argue that the concept of edge is not fully accomplished by coarse
grained distribution of AWS edge nodes (i.e., only 77 locations
worldwide at the time of writing).

Motivated by this, a simplified architectural overview of Server-
less edge computing is demonstrated in Fig. 1. With the literature
efforts in mind [1, 4, 5, 10, 22, 23, 25, 34, 41], the figure provides
essential components of Serverless and their placement in the edge
as well as cloud. In brief, from edge view, IoT devices are in con-
nection with edge nodes, each of which enabled with the whole
Serverless functionality which is fully or partially shared across
the edge network, depending on the considered implementation.
From Serverless view, the key functionality of Serverless in this
paradigm is to provide an efficient event processing platform in
edge computing [5]. From IoT view, less adaptation is needed and it
only has to follow function-based FaaS principles. And from cloud
view, the original Serverless in the central cloud is intended to inte-
grate itself with its distributed partner in edge computing. Under
the hood, the life-cycle of an event can be illustrated as follows.

3.0.1 Edge and IoT Clients. Edge nodes will resemble a cloud data
center characteristics, i.e., enabling computation, communication
and storage. However, edge nodes are recognized to be extremely
smaller, in greater numbers and fully distributed [28], which add
the complexity to the control and management of the edge side.

IoT devices generate tasks by means of sensors and commu-
nication protocols such as HTTP and Application Programming
Interfaces (APIs) by practicing event-driven principles. Given the
distributed nature of IoT applications, such as sensors scattered
across the urban area to monitor the transportation system in Smart
City case, and the necessity of broadcasting messages, HTTP might
not be always the practical solution. Hence, the Serverless-enabled
edge is intended to support publish/subscribe communication pro-
tocols such as MQTT and DDS as well [12].
2https://www.serverless.com/blog/2018-serverless-community-survey-huge-growth-
usage

ACSW ’21, February 1–5, 2021, Dunedin, New Zealand Aslanpour and Toosi, et al.

Technically, if an IoT device itself has computation capability,
for example a Raspberry Pi with interfaced sensors, it can act also
as an edge node. Certain edge computing paradigms such as mist
computing, or extreme edge, would follow this design [43].

3.0.2 Edge Network. Via the above-mentioned protocols the events
are generated in IoT side and then edge nodes (as gateways or
front-end devices) are in charge of handling events by triggering
functions in the Serverless platform and returning appropriate
actuation as another event if necessary. The Serverless platform is
distributed over the edge nodes so that each node can handle the
whole life-cycle of an incoming event or can offload to peers. In
case of offloading, the initial node may return the event reply to
the IoT layer or leave this responsibility to the remote node.

3.0.3 Serverless Platform. The Serverless platform consists of three
main layers: coordination, execution and computation.

Coordination: The handler edge node will pass the event and its
associated data such as authentication, API identifier, etc. to the
controller component, bringing Serverless into gear. The controller
acts as a load balancer. If the admitted event message is valid and the
incoming load is not heavy, it is passed to the scheduler component,
which based on the the triggers and rules sends the message to
corresponding execution engine (or so-calledworker [23]) associated
to a function [5]; otherwise, it is kept in the queue component for
certain reasons such as failure handling andmitigating message loss
and in another iteration it is passed to the scheduler. The concept
of queue here is deemed to keep messages for no more than a brief
of milliseconds.

Execution: Once the message is handed to the execution engine,
the engine acts on provisioning run-time environment for the cor-
responding function, either by reusing an already instantiated, but
idle, function or by creating a new instance of the function. The
core auto-scaler is also embedded in this component. Note that
Serverless platforms would keep the function instance alive and
avoid instant termination for a short period to serve upcoming
events. The monitoring component is continuously babysitting the
life-cycle of incoming and outgoing events to log the observations.
The latest updates are kept in themonitoring component, and other
layers, from computation to gateway, can interact with the moni-
toring component to collect required data.

Computation: To create a new instance, the requested computing
resources are allocated by the computing component. The data, the
function’s state and the required libraries for executing a task in
the functions are pulled from the storage component. To provision
a new function, the computing component on an edge node will
be able to interact with peers for offloading purposes as well. This
is enabled by the networking component which is aware of peer’s
location (to provide server affinity), capacity, energy status, etc.
The monitor component of each node is replying to the computing
component of a demanding node. This offloading is essential, as
the Serverless platform is intended to work collaboratively and in
a distributed manner. Edge nodes build a pool of shared resources
to compensate limited resources on each node.

3.0.4 Cloud Data Center. The Serverless paradigm can be also aug-
mented with a cloud layer where they can seamlessly collaborate to
share resources and execute functions by adopting a synchronized

distributed computation layer. An orchestration for the compu-
tation layer may also be feasible (preferably located at the edge)
acting as a gateway between edge and cloud executions. If fault
tolerance is crucial, this component can be kept in the cloud. The
cloud side can meanwhile serve traditional Serverless clients.

Overall: The Serverless edge computing paradigm creates many
new possibilities and opportunities which are discussed in Section 4.
The challenge to realize this paradigm, however, is that we need
to overcome issues such as resource limitations on the edge nodes,
complexity of executing multiple and dependent functions (and
also function compositions), and distributed nature of edge nodes,
to name a few. These and other open issues to realize Serverless
edge computing are critically discussed in Section 5. Fig. 2 shows a
taxonomy of identified opportunities and open issues.

4 OPPORTUNITIES
4.1 Pure Pay-per-use
Unpredictable workload in IoT applications appears inconsistent
with static container provisioning which imposes charges even
during idle times. Of course, dynamic auto-scaling is feasible to
alleviate, but extra charges still exist, or QoS is endangered, due
to highly likely imprecise over- and under-provisioning, respec-
tively [7]. This is further problematic when the application, as well
as consistent workload, is likely to encounter large spikes, wherein
bulking up the capacity appears the only viable option, but at a
high cost. By Serverless, however, the charge is driven by actual
triggered events, i.e., the dedicated resource and number of times a
function is triggered. By Serverless, fulfilling the price predictability
for IoT is closer to reality, where the same (and minimal) rate is
always paid per events/transactions, so no matter it is undergoing
a spiky or consistent workload. Assuming a traffic control camera
which is taking photos of offensive cars’ plate and sending it to
cloud for image processing. Such actions will happen consistently
during the day, spiky in rush hours and occasionally at mid-night,
making the resource provisioning highly challenging. If this pro-
cessing is handled by precise scalability of Serverless which avoids
over-provisioning and pay for idle times, such variability will not
affect the imposed cost.

4.2 Always-on Mitigation
IoT use cases such as Smart Irrigation Systems are intended to op-
erate on resource constraint devices in terms of power and compu-
tation, due to the environmental-related challenges in deployments.
Their power will likely be supplied by batteries or renewable energy
sources such as solar panels and computations, as well as orches-
tration will be handled by Single-board Computers (SBCs) such
as Raspberry Pis. Add to this that they are running applications
which periodically, not consistently, run to collect data such as soil
humidity. Such limitations will not be consistent with conventional
deployments which need the application to be always up and run-
ning, even when no event occurred. Also, this approach will always
occupy certain amount of unused resources. Serverless with the
scale to zero feature will provide the opportunity for edge nodes to
save their limited resources and increase the lifetime [36]. Server-
less can minimize the energy consumption by only provisioning
when a trigger such as sensing is pulled and then de-provisioning

Serverless Edge Computing: Vision and Challenges ACSW ’21, February 1–5, 2021, Dunedin, New Zealand

C
oordination

Execution
C
om

putation

Cloud Data Center

Internet

Traditional Serverless Clients

Serverless Platform

Storage Networking Computing

MonitoringExecution
Engine

Queue Controller Scheduler

Edge Network

Edge and IoT Clients

Figure 1: A simplified Serverless Edge Computing Paradigm.

Serverless Edge Computing

Pure Pay-per-use

Open IssuesOpportunities

Always-on Mitigation

Event-driven Applications

Stateless Life-cycle

Parallelizing Computation

Storage Isolation

Fine-grained Auto-scaling

Bursty Workload

CPU-bound Applications

Custom-made Solutions

Cloud to Edge Integration Cold Starts

Impracticable Cost-efficiency

Continuous Workloads

Edge Artificial Intellegence (AI)

Location-agnostic

Distributed Networking

Energy-agnostic

Data Shipping Architecture

Brief Resource Specifications

Reliability and Fault Tolerance

Resource inefficiency

Security

No GPU Support

Function Triggering

4.1

4.2

4.3

4.4

4.5

4.6

4.11

4.10

4.9

4.8

4.7

5.1

5.2

5.3

5.4

5.14

5.13

5.12

5.11

5.10

5.5

5.6

5.9

5.8

5.7

Simulation Tools

Vendor Lock-in

5.15

5.16

Figure 2: A Taxonomy of identified opportunities and open issues for Serverless Edge Computing.

idle resources [10]. This advantage of Serverless provides another
view of its suitability for event-driven applications.

4.3 Event-driven Applications
Given the event-based life of sensor and actuation-based IoT appli-
cations, Serverless can perfectly suit them. In typical cloud services,
e.g., back-end systems for mobile applications, events such as API
calls and data storage are playing a key role in function invoca-
tion. On the other hand, most IoT applications are event-driven.
In Smart Agricultural Farming, for instance, the decision-making
about farm management is a perfect example of a sensing-driven
application; the management system is triggered by temperature
and humidity variability, otherwise it does nothing. In Serverless

terms, this means that the sensor can make a preliminary decision
on whether to trigger a chain of function invocations, based on
local data acquisition; if not triggered, there are zero resources con-
sumed on the Serverless platform. In another example involving
both the cloud and an edge system, the remote sensor might always
trigger the execution of a given function on the edge system (with
humidity/temperature data), then the latter can take the decision
on whether to escalate to the management system by triggering
a function in the cloud platform or not. In all cases Serverless’s
design fits very well the sense-decide-act pattern, which is typical
of many IoT applications of practical interest [10, 42].

ACSW ’21, February 1–5, 2021, Dunedin, New Zealand Aslanpour and Toosi, et al.

4.4 Stateless Life-cycle
In edge designed for event-driven IoT applications, the invoked
functions are running tasks such as image processing which es-
sentially have not, and would not require, the knowledge of past
occurrences. In a Road Vehicle Monitoring System, the monitor
is interested in calling an image provisioning function to analyze
the license plate number in an image input. This function will not
require any knowledge of past tasks and only loads repetitive code
and libraries, as if making it from scratch. Stateless functions have
only one task to do, as IoT events demand. Statelessness is hence
fundamentally transformable to the edge by means of Serverless.
What can accelerate this transformation is the underlying resource
abstraction in Serverless which rely on containers and unikernels.
Such abstractions are purposely built to be stateless [31].

4.5 Parallelizing Computation
With the ability to execute independently, the ability of Serverless
functions to parallelize computation is added value. By themselves,
functions are usually quite under-powered, but if the problem is
decomposited and processing is parallelized, this is where another
advantage of Serverless for parallelized IoT use cases appears, es-
pecially if the problem space is suitable to this kind of decomposi-
tion. Take Defense IoT (DIoT) and particularly its edge computing
enabled Equipment Tracking Systems as an example [16]. Once a
hazard is perceived, it is crucial to quickly trigger an event to obtain
the perception of equipment being tracked such as cars, ambulance,
tactical devices, etc., before any action. Such equipment will need
to run independent processing and generate their own response
quickly while they might be running mission-related tasks. Without
parallelizm, mission-critical IoT applications are highly likely to
fail to react promptly. Serverless-enabled equipment will leverage
decomposition of such tasks and hence parallelism thereof. Server-
less is further practical here as the scalability of invoked function
will come into the play when multiple similar alarms are received
by peers.

4.6 Storage Isolation
IoT applications such as Smart Traffic Monitoring are continuously
collecting data. In case of bursty workload, a massive amount of
data is shipped with the application to be scaled up in conventional
deployments. This approach can be a hassle to timely launch the
new instance, regardless of storage wastage. This is further prob-
lematic when the machine is provisioned from remote devices (i.e.,
task offloading), demanding to ship the data and imposing further
traffic congestion. Serverless provides decoupled computation and
storage which can be scaled and provisioned separately and hence
quickly [22].

4.7 Fine-grained Auto-scaling
One of the biggest challenges in edge devices is resource limita-
tions. Obviously, conventional virtual machines were not a perfect
solution due to large memory footprint, and difficult scalability
(i.e., creating more replicas of the same service on a device) which
comes at the expense of duplicating large amount of data, includ-
ing the operating system and application environment. Relying

on lightweight abstractions, including containers and, more re-
cently, unikernels [31] such as microVM3, Serverless will meet
small footprint and fine-grained auto-scaling, because the overhead
of creating/terminating replicas is very small compared to full-
fledged virtual machines. This is further promising when Serverless
is following function as computation principles inherited from the
advances in microservices architecture, instead of considering the
whole application as a black box [1, 8].

4.8 CPU-bound Applications
To deploy a function in Serverless environments, the amount of
CPU required for each instance is pre-defined. Hence, a Serverless-
enabled platform is always aware of the CPU requirements of an
application. Backed by automatic scalability, this CPU specification
has made the Serverless well-suited for CPU-bound applications in
clouds [5]. IoT use cases driven by CPU-intensive functionalities
can leverage this enabler as well to avoid unnecessary resource
(e.g., memory or data) provisioning in scaling practices. Self-driving
cars employing a Pedestrian Monitoring System can be a perfect
example. The system functionality is to trigger events containing
images of the surrounding area which need to be processed using
the edge device embedded in the car (e.g., Engine Control Unit-
ECU). The processing is to detect pedestrians who might cross the
street, or trajectories of other vehicles that may eventually collide
with us, etc. Such CPU-bound applications can effectively be made
Serverless-enabled and embedded in edge nodes so that they are
able to proportionally scale up/down the CPU-bound functions.

4.9 Bursty Workloads
In terms of workload type, 81% of Serverless use cases constitute
bursty, i.e., spiky or flash crowd, workloads [13]. This is mostly due
to effortless and fine-grained scalability embedded in Serverless,
which avoids long latencies and provides precise resource provi-
sioning, respectively. Motivated by this, IoT use cases with potential
to encounter bursty workloads will fit very well with Serverless
deployments. Use cases such as traffic or crowd control systems are
continuing monitoring and are exposed to bursty events. Failing to
timely reacting can cause an important event to be unnoticed [33],
for instance. Traditional IaaS/PaaS systems may only handle bursts
by overprovisioning the resources, e.g., in terms of service repli-
cas always active, because their auto-scale functions may yield
a latency that is incompatible with the application requirements.
This is aggravated in edge domains, because edge nodes have more
limited resources than their cloud counterparts, hence overprovi-
sioning is even more undesirable there. Serverless brings significant
benefits to use cases subjects to flash crowd effects since it allows to
exploit statistical multiplexing of bursty workloads through scale-
to-zero during idle times, and fast up-scale at peaks. Given that,
edge computing orchestrators will utilize Serverless functions, in-
stead of lazy heavyweight virtualization and inefficient resource
reservation solutions to handle such burstiness.

4.10 Custom-made Solutions
Edge frameworks and their requirements vary depending on the
IoT use case, environmental limitations, locality requirements, etc.
3https://firecracker-microvm.github.io

Serverless Edge Computing: Vision and Challenges ACSW ’21, February 1–5, 2021, Dunedin, New Zealand

With this in mind, edge nodes provided by public cloud offerings
with limited geographically distributed locations will not satisfy
the need for purpose-built edge frameworks in the near term. For
instance, while transmitting data between agricultural facilities is
already challenging, reaching out the cloud-hosted Serverless can
be an even bigger challenge. Fortunately, custom-made Serverless
solutions such as OpenFaaS4 can remove the burden for Serverless
at the edge whereby no interaction to inaccessible cloud is required.
Custom-made solutions are also adapting themselves with resource-
limited edge nodes, with faasd as a lightweight platform which
even works without Kubernetes orchestrator. Estimations also con-
firm their satisfactory performance, where they are involved in
53% of Serverless use cases, gaining more popularity than cloud
offerings [14].

4.11 Cloud to Edge Integration
While certain IoT use cases tend to stay isolated at the edge of
network such as Smart Farming, several use cases require seamless
integration and interaction with cloud as well. This is to enable data
persistent or access infinite-computation, to name a few [28], and
particularly essential for mobile edge computing which demands
both cloud and edge computations, for example for task offloading
purposes [36]. Existing Serverless platforms, although originally
designed for cloud, are now adopting themselves to this requirement
and enable a Serverless-enabled edge platform integrated with
cloud [15]. A successful example is AWS IoT Greengrass5 which
runs Lambda Functions under the hood. This opportunity will
help clients executing their tasks on edge nodes until there are
resources available, then it starts offloading to the cloud. Transition
between edge and cloud is designed to be transparent to the client.
The system is also robust to intermittent cloud connectivity. The
integration is no longer an obstacle for Serverless to be adapted in
edge computing.

5 OPEN ISSUES
5.1 Cold Starts
Although it is generally considered a successful achievement in the
cloud landscape, scale to zero technique and subsequent cold start
of Serverless functions are not suited for some latency-sensitive IoT
applications [13]. Said that, scale to zero appears a double-edged
sword. On the positive side, it reduces energy consumption. On
the other side, the first invocation of the function will sustain a
cold startup which imposes tens or hundreds milliseconds of de-
lays with current technologies. This delay is not an issue for batch
applications which are intended to resize an image stored in the
storage, for instance. However, such delays can have performance
degradation for latency-sensitive IoT applications managed by an
embedded edge device. For instance, an edge device in a driver-
less car surely prefers to reach timely decisions (e.g., activating
the break pedal) to avoid accidents than to save energy, which is
abundant in an electric car and, thus, its reduction is deemed a
secondary requirement. Hence, the cold start must be addressed be-
fore adopting Serverless Edge Computing if high latency (or jitter)
avoidance is a must. The reason for such popularity of Serverless
4https://www.openfaas.com/
5https://aws.amazon.com/greengrass/

despite the cold startup bottleneck appears that the today customers
are concerned about the cost, not latency. Estimations show that
only 2% of Serverless use cases are intended for real-time applica-
tions [14]. The research community, however, has not been silent
and proposed many promising solutions such as warm starts [1],
function pinging [25], pre-loading critical packages for the con-
tainer, utilizing further agile unikernels (or Web Assembly-based
resources [19]) instead of containers [1], and overhead reduction
in development phase [42], to name a few.

5.2 Impracticable Cost-efficiency
Cloud-domain estimations [14] revealed that a huge share of Server-
less popularity comes from its cost-efficiency (41%) rather than its
performance (23%), which is compelling with its pure pay-as-use
model. However, (1) mission-critical IoT use cases such as health-
care require high performance to predict significant incidents before
they actually occur. (2) Edge computing frameworks are intended
to be purpose-built, hence likely to adopt open-source and custom-
made solutions which would not come behind monetary cost mat-
ters. This also may reduce the role of cloud offerings in the future
market, thereby eliminating the monetary matters in public cloud
offerings. For instance, a private Serverless-enabled farm with local
resources will not pay money to themselves. Instead, their deploy-
ment concerns will probably shift from cost-efficiency in cloud to
high performance in edge.

5.3 Continuous Workloads
Although event-driven execution applications are identified as suit-
able use cases of IoT to run Serverlessly, there are several IoT use
cases encountering continuous executions such as traffic control
systems. The cost-efficiency of Serverless for such use cases is
under doubt [1]. Assume that the edge node has to continuously
respond to incoming workload and no idle times are expected. Such
executions will continuously call functions. The reality is that cost-
efficiency of Serverless will not be accomplished, but degraded, by
continuous function invocations. Investigations shows that, always-
on resources will work more efficient for continuous executions [1],
until more efficient resource scheduling schemes are found for
Serverless platforms [27]. The cost-inefficiency becomes further
apparent if the functions are long-running, as the billing is based on
both allocated resource and execution time. Regardless of the cost,
the obtained latency will also increase due to stateless executions.
The statelessness causes a resource provisioner to look for new
resources for an instance creation per execution.

5.4 Edge Artificial Intelligence (AI)
Edge AI is a booming area for predictive IoT solutions by utiliz-
ing machine learning at the edge [11], whether central or feder-
ated learning. With long-running AI tasks, utilizing cloud offer-
ing Serverless will not be cost-efficient, as investigations show
that both training and testing machine learning at the edge with
computation-limited resources will be I/O intensive and hence time-
consuming [20]. Edge AI processing will involve significant I/O-
intensive long-running tasks while Serverless is intended to work
well for CPU-bound short-running CPU-bound functions. Lack of
awareness appears deep, though. In fact, while I/O-intensive appli-
cations are deemed unworthy of delivering to Serverless, studies

ACSW ’21, February 1–5, 2021, Dunedin, New Zealand Aslanpour and Toosi, et al.

show that they comprise the majority of Serverless use cases, even
more than CPU-bound [14].

5.5 Location-agnostic
In the edge landscape, the devices will be distributed across the
environment and communicate with each other. Minimizing the
communication overhead has always been a controversial issue and
efforts are needed to make the edge nodes aware of their offloading
decisions, for instance [22]. Serverless platforms, though, care more
about resource customizability and are agnostic to the network com-
munications. In the cloud, a logically centralized controller deciding
on resource provisioning on unlimited resources, but at the edge,
this can be fully distributed and task offloading or load distribu-
tion exist actually. Moreover, due to the statelessness, executions
deprive new instances of past locations of peers and dismiss server
affinity. Assume that the edge node decides to offload the resource
provisioning for a function to peers, in favour of energy saving or
due to lack of available resources. In this case, the execution time,
communication overhead and energy consumption for running the
function is highly dependent on the edge node undertaking the
function. Function composition (i.e., interaction between functions)
can also make resource optimization even more complex. Server-
less appears not to be designed for such considerations, whereas
location-awareness resource provisioning is essential in many edge
applications [18].

5.6 Energy-agnostic
One of the main promises of Serverless is resource-efficiency by
fine-grained embedded scalability in cloud. Cloud offerings are con-
scious of subscribed CPU and memory on the underlying Serverless
platform. However, when it comes to the edge, energy and delay are
matter of concern, and even themost important in particular IoT use
cases such as Smart Farming which are driven by battery-operated
sensors and struggle with their limited lifetime. To adopt Serverless
at the edge, energy-aware function provisioning is essential, other-
wise the Serverless-enabled edge device might sacrifice the energy
in the interest of finding edge nodes with less provisioned CPU and
memory. It also seems that cloud-driven performance metrics such
as scalability, concurrent requests and boot time are needed to be
revisited when Serverless travels to edge computing [30].

5.7 Distributed Networking
Given the distributed nature of many IoT applications, the search
for peer-to-peer communications to share state, offload tasks, and
send data is important. For instance, a vehicular ad-hoc network
(VANET) requires interactions between vehicles to find out the best
routing, demanding remote function calls on peers. However, cloud-
based designs for Serverless are dismissing this necessity, resulting
in inefficient function communications. With present Serverless
architecture, functions have to communicate through intermediary
functions or storage systems [38]. Fortunately, this issue appears
temporary, as projects such as Serverless Supercomputing will
explore it [9].

5.8 Data-shipping Architecture
Regardless of the networking limitations, data and storage are to
be taken care of in Serverless edge computing. Serverless would

more emphasize on CPU and memory specifications and would dis-
regard storage provisioning techniques which are essential in the
distributed edge. Stateless performance followed by lack of server
affinity would provoke the problem. In cloud also, the applications
maintain the (remote) state by storing in storage like DynamoDB,
but this state must be maintained closer in the edge case. This weak-
ness can make Serverless-enabled edge devices send huge amount
of data per function invocation to the remote device [20]. This bar-
rier is seen also when functions are interacting with each other as
function composability: for instance, if an application consists of
a chain of invocations of functions from the initial input from the
user to the final output, the transfer cost is paid only once in case of
a monolithic application in a VM/container, but may have to be paid
multiple times with serverless, i.e., between any two consecutive
function invocations if each is executed on a different (edge) node.
In cloud, such limitations are seamlessly handled by powerful data
centers and high speed communications, but in distributed edge,
such data shipping is problematic, particularly when it comes to
mist computing [28]. Mist refers to a fully distributed edge network
without a central controller. As possible solutions, it is suggested
that the data transmission must be dependent on all CPU, RAM and
data requirements. If the CPU on an edge device is oversubscribed,
the processing can move to data, or if a huge amount of memory
needs to be read, the processing can move to the data location [2].

5.9 Brief Resources Specifications
AWS Lambda as the pioneer revealed that each invoked function
can execute a task for up to 15 minutes. McGrath et al. [30] also
raised the question that “Is function termination time of 15 minutes
efficient?” Although regarded quite sufficient for IoT with event-
driven and short-running tasks, yet particular use cases such as data
analytics may not be adopted with this limitation. Oppositely, keep-
ing a function warm for 15 minutes, for instance, which is followed
by cloud providers may not be always necessary. Additionally, func-
tion size and concurrency level may prove cumbersome when it
comes to the edge [40]. Fortunately, this will not encounter a major
obstacle as open-source solutions will ease the burden since they
will allow full configuration to adapt the platform to the specific
use case. The open source community in this area is vibrant and it is
making huge progresses towards the goal of customized serverless
platforms for all needs. For instance, OpenFaaS, already mentioned
above, is now offering a lighter version as faasd which can run
smoothly even on extremely resource-limited edge devices such as
Raspberry Pis.

5.10 Reliability and Fault Tolerance
Failures always exist, whether in cloud or edge, but the difference is
at the degree of reliability. In cloud data centers, such occurrences
are handled by multiple layers of underlying virtualization and
continuous and fine monitoring of servers and applications. In
the edge, however, fault rolerance techniques are very limited and
we envision more robust solutions which have to be defined to
achieve the desired level of resiliency. Palade et al. [35] raise the
concern that existing Serverless platforms would not sufficiently
care about fault tolerance, which is critical in mission-critical IoT
applications [16], for instance. If a function’s container failed, or

Serverless Edge Computing: Vision and Challenges ACSW ’21, February 1–5, 2021, Dunedin, New Zealand

more seriously, if a function’s edge node failed, how the lack of that
is covered by Serverless platforms? Given the real-time nature IoT
applications, not handling such failures can cause a disaster.

5.11 Resource Inefficiency
In IoT domain, efficient and agile resources to be provisioned,
booted-up and ran are essential for real-time and latency-sensitive
use cases such as Fleet Monitoring in DIoT [16]. The computation-
limited nature of edge nodes also doubles the challenge [7]. This is
because while cloud benefits from infinite and powerful resources,
the occurrence of resource saturation is highly likely in edge [28].
Leveraging container provisioning was a big step towards efficiency
where edge devices such as SBCs are unable to launch heavyweight
hypervisor-based machines. Containers’ negative side, though, is
that although a purpose-built container itself cannot be heavy, pre-
requisites such as Docker engines are still heavy, particularly when
the Serverless platform is launched on top thereof. To alleviate the
boot-up time, unikernels are proposing effective solutions by omit-
ting the intermediary layer such as Docker engine. The microVM
introduced by AWS Firecracker6 can realize reasonable boot-up
time (e.g., 125ms) and efficient memory footprint, although the
latter and problematic orchestration thereof are debated in [29].
Having said that, not only virtualization, but also the Serverless
platforms are inevitably needed to be more agile.

5.12 Security
In the cloud, Serverless is backed by the firewall and Trusted Exe-
cution Environment (TEE) platforms [24], while in vulnerable edge
network the devices are exposed [18]. The distributed nature of
microservices, as well as expected multi-tenancy, make it further
vulnerable, particularly when functions are deployed on contain-
ers which exhibit weaker isolation than VMs. There are attempts
to reasonably isolate microservices by developing unikernel or
microVMs [29]. The latter is particularly designed to ensure an
isolated environment by combining technologies such as cgroups,
namespaces, seccomp-bpf, iptables, and chroot. Moreover, given the
functions are deemed to be distributed across the edge network,
the transmission pattern between them can make them further
vulnerable, although their ephemerality will stop continuous data
leakage at least [22]. Having said that, security guarantees are still
necessary to be given prior to enabling Serverless at the edge.

5.13 No GPU Support
Most commercial Serverless platforms do not offer APIs that al-
low the offloading of computation to specialized hardware, such as
GPUs and FPGAs, that might be more efficient to the task at hand.
This limitation makes it impossible to adopt Serverless edge for
GPU-based real-time streaming applications, such as Smart Supply
Chain Systems, which are equipped with real-time information and
monitor the entire supply chain, from suppliers to distributors and
retails [16]. Serverless architecture appears to need revisiting for
such sectors, especially at the edge, by extending the programming
paradigms so as to be more comprehensive towards different hard-
ware targets, while keeping the same level of abstraction that we

6https://firecracker-microvm.github.io

have today. For commercial systems, this might also require dif-
ferentiated pricing plans and more flexible billing and accounting
schemes compared to what are available today.

5.14 Function Triggering
Cloud-driven Serverless manages the function triggering through
HTTP APIs, cloud events, scheduled events, etc, with HTTP as the
widely-popular type with 46% share [14]. The reality is that HTTP
APIs are of request/reply family of communication patterns while in
IoT the subscribe/reply pattern (e.g., MQTT) is more widely adopted.
Cloud offerings and open-source platforms such as AWS Green-
Grass and KubeEdge7, respectively, have recognized this necessity
and are filling this gap.

5.15 Simulation Tools
Serverless applications include many moving parts, that cannot
be tested locally [26]. Testing a Serverless application on the edge
requires extra effort and new practices to test the system in pro-
duction. The analysis of log tracing is a possible approach [26].
Given that, simulation tools providing the testing and evaluation
of Serverless edge computing are essential to alleviate the complex-
ities.

5.16 Vendor lock-in
Adopting a Serverless-based solution with one vendor makes it
very difficult to switch other vendors. As an example, the adoption
of vendor-specific message buses, API-Gateways or other native
technologies, increase even more the vendor lock-in [41].

6 CONCLUSIONS
Serverless computing has established its position in cloud comput-
ing and is known as a cost-efficient, agile, low footprint solution
for short-running applications. However, its suitability for edge
computing driven by IoT applications is yet to be proven. In this
paper, we carefully analyzed the advantages of bringing Serverless
to the edge and potential obstacles for such accomplishments.

After a thorough evaluation of both sides, we can admire the
suitability of Serverless in terms of (1) offering pure pay-per-use,
(2) mitigating always-on resource provisioning, (3) consistency
with event-driven nature of IoT, (4) easy to parallelize stateless
functions, (5) fulfilling storage isolation, (6) fine-grained scalability
for resource-limited edge devices, (7) moving inline with bursty
workloads and CPU-bound applications, (8) existing custom-made
platforms, and (9) viability of cloud to edge integration.

However, our evaluation voices serious challenges about the
feasibility of Serverless edge computing with today’s technology in
terms of (1) cold startup provoking long latencies, (2) impractical
cost-efficiency designed for cloud, (3) unsuitability for continuous
workloads and edge AI applications along with no support for
GPU considerations (4) lack of location- and-energy-awareness, (5)
unconsidered distributed networking, (6) inefficient data shipping,
(7) brief resource specification, (8) reliability and fault tolerance
concerns, (9) possibility of provoking resource inefficiency, (10)
security concerns, (11) immature function triggering and (12) lack
of simulation tools.
7https://kubeedge.io/en/

ACSW ’21, February 1–5, 2021, Dunedin, New Zealand Aslanpour and Toosi, et al.

We believe Serverless will bring additional benefits to edge com-
puting if we can overcome these challenges, which requires joint
efforts from academia, industry, and the relevant open source com-
munities.

REFERENCES
[1] Paarijaat Aditya, Istemi Ekin Akkus, Andre Beck, Ruichuan Chen, Volker Hilt,

Ivica Rimac, Klaus Satzke, and Manuel Stein. 2019. Will Serverless Computing
Revolutionize NFV? Proc. IEEE 107, 4 (2019), 667–678.

[2] Zaid Al-Ali, Sepideh Goodarzy, Ethan Hunter, Sangtae Ha, Richard Han, Eric
Keller, and Eric Rozner. 2018. Making serverless computing more serverless.
In 2018 IEEE 11th International Conference on Cloud Computing (CLOUD). IEEE,
456–459.

[3] Mohammad S. Aslanpour, Sukhpal Singh Gill, and Adel N. Toosi. 2020. Perfor-
mance evaluation metrics for cloud, fog and edge computing: A review, taxonomy,
benchmarks and standards for future research. Internet of Things 12 (2020), 100273.
https://doi.org/10.1016/j.iot.2020.100273

[4] Javadi Bahman, Sun Jingtao, and Ranjan Rajiv. 2020. Serverless architecture
for edge computing. In Edge Computing: Models, technologies and applications.
Institution of Engineering and Technology, 249–264. https://doi.org/10.1049/
pbpc033e_ch12

[5] Ioana Baldini, Paul Castro, Kerry Chang, Perry Cheng, Stephen Fink, Vatche
Ishakian, Nick Mitchell, Vinod Muthusamy, Rodric Rabbah, and Aleksander
Slominski. 2017. Serverless computing: Current trends and open problems. In
Research Advances in Cloud Computing. Springer, 1–20.

[6] Luciano Baresi, Danilo Filgueira Mendonça, and Martin Garriga. 2017. Empower-
ing low-latency applications through a serverless edge computing architecture.
In European Conference on Service-Oriented and Cloud Computing. Springer, 196–
210.

[7] Rajkumar Buyya, Satish Narayana Srirama, Giuliano Casale, Rodrigo Calheiros,
Yogesh Simmhan, Blesson Varghese, Erol Gelenbe, Bahman Javadi, Luis Miguel
Vaquero, and Marco A S Netto. 2018. A manifesto for future generation cloud
computing: Research directions for the next decade. ACM computing surveys
(CSUR) 51, 5 (2018), 1–38.

[8] Paul Castro, Vatche Ishakian, Vinod Muthusamy, and Aleksander Slominski. 2019.
The rise of serverless computing. Commun. ACM 62, 12 (2019), 44–54.

[9] Ryan Chard, Tyler J Skluzacek, Zhuozhao Li, Yadu Babuji, Anna Woodard, Ben
Blaiszik, Steven Tuecke, Ian Foster, and Kyle Chard. 2019. Serverless super-
computing: High performance function as a service for science. arXiv preprint
arXiv:1908.04907 (2019).

[10] Claudio Cicconetti, Marco Conti, Andrea Passarella, and Dario Sabella. 2020.
Toward Distributed Computing Environments with Serverless Solutions in Edge
Systems. IEEE Communications Magazine 58, 3 (2020), 40–46.

[11] Shuiguang Deng, Hailiang Zhao, Weijia Fang, Jianwei Yin, Schahram Dustdar,
and Albert Y Zomaya. 2020. Edge intelligence: the confluence of edge computing
and artificial intelligence. IEEE Internet of Things Journal (2020).

[12] Jasenka Dizdarević, Francisco Carpio, Admela Jukan, and Xavi Masip-Bruin. 2019.
A survey of communication protocols for internet of things and related challenges
of fog and cloud computing integration. ACM Computing Surveys (CSUR) 51, 6
(2019), 1–29.

[13] Simon Eismann, Joel Scheuner, Erwin van Eyk, Maximilian Schwinger, Johannes
Grohmann, Nikolas Herbst, Cristina Abad, and Alexandru Iosup. 2020. Serverless
Applications: Why, When, and How? IEEE Software (2020).

[14] Simon Eismann, Joel Scheuner, Erwin van Eyk, Maximilian Schwinger, Johannes
Grohmann, Nikolas Herbst, Cristina L Abad, and Alexandru Iosup. 2020. A review
of serverless use cases and their characteristics. arXiv preprint arXiv:2008.11110
(2020).

[15] Nabil El Ioini, David Hästbacka, Claus Pahl, and Davide Taibi. 2020. Platforms
for Serverless at Edge: A Review. In 1st International Workshop on Edge Migration
and Architecture.

[16] Paula Fraga-Lamas, Tiago M Fernández-Caramés, Manuel Suárez-Albela, Luis
Castedo, and Miguel González-López. 2016. A review on internet of things for
defense and public safety. Sensors 16, 10 (2016), 1644.

[17] Mostafa Ghobaei-Arani, Alireza Souri, and Ali A Rahmanian. 2020. Resource
Management Approaches in Fog Computing: a Comprehensive Review. Journal
of Grid Computing 18, 1 (2020), 1–42. https://doi.org/10.1007/s10723-019-09491-1

[18] Alex Glikson, Stefan Nastic, and Schahram Dustdar. 2017. Deviceless edge com-
puting: extending serverless computing to the edge of the network. In Proceedings
of the 10th ACM International Systems and Storage Conference. 1.

[19] Adam Hall and Umakishore Ramachandran. 2019. An execution model for
serverless functions at the edge. In Proceedings of the International Conference on
Internet of Things Design and Implementation. 225–236.

[20] Joseph M Hellerstein, Jose Faleiro, Joseph E Gonzalez, Johann Schleier-Smith,
Vikram Sreekanti, Alexey Tumanov, and Chenggang Wu. 2018. Serverless com-
puting: One step forward, two steps back. arXiv preprint arXiv:1812.03651 (2018).

[21] Luis Felipe Herrera-Quintero, Julian Camilo Vega-Alfonso, Klaus Bodo Albert
Banse, and Eduardo Carrillo Zambrano. 2018. Smart its sensor for the trans-
portation planning based on iot approaches using serverless and microservices
architecture. IEEE Intelligent Transportation Systems Magazine 10, 2 (2018), 17–27.

[22] Eric Jonas, Johann Schleier-Smith, Vikram Sreekanti, Chia-Che Tsai, Anurag
Khandelwal, Qifan Pu, Vaishaal Shankar, Joao Carreira, Karl Krauth, and Neeraja
Yadwadkar. 2019. Cloud programming simplified: A berkeley view on serverless
computing. arXiv preprint arXiv:1902.03383 (2019).

[23] Young Ki Kim, M Reza HoseinyFarahabady, Young Choon Lee, and Albert Y
Zomaya. 2020. Automated Fine-Grained CPU Cap Control in Serverless Comput-
ing Platform. IEEE Transactions on Parallel and Distributed Systems 31, 10 (2020),
2289–2301.

[24] Dayeol Lee, David Kohlbrenner, Shweta Shinde, Krste Asanović, and Dawn
Song. 2020. Keystone: An open framework for architecting trusted execution
environments. In Proceedings of the Fifteenth European Conference on Computer
Systems. 1–16.

[25] Philipp Leitner, Erik Wittern, Josef Spillner, and Waldemar Hummer. 2019. A
mixed-method empirical study of Function-as-a-Service software development
in industrial practice. Journal of Systems and Software 149 (2019), 340–359.

[26] V Lenarduzzi andA Panichella. 2021. Serverless Testing: Tool Vendors and Experts
Point of View. IEEE Software (2021), 0. https://doi.org/10.1109/MS.2020.3030803

[27] C Lin and H Khazaei. 2021. Modeling and Optimization of Performance and Cost
of Serverless Applications. IEEE Transactions on Parallel and Distributed Systems
32, 3 (mar 2021), 615–632. https://doi.org/10.1109/TPDS.2020.3028841

[28] Redowan Mahmud, Kotagiri Ramamohanarao, and Rajkumar Buyya. 2020. Ap-
plication Management in Fog Computing Environments: A Taxonomy, Re-
view and Future Directions. ACM Comput. Surv. 53, 4 (jul 2020). https:
//doi.org/10.1145/3403955

[29] Filipe Manco, Costin Lupu, Florian Schmidt, Jose Mendes, Simon Kuenzer, Sumit
Sati, Kenichi Yasukata, Costin Raiciu, and Felipe Huici. 2017. My VM is Lighter
(and Safer) than your Container. In Proceedings of the 26th Symposium on Operat-
ing Systems Principles. 218–233.

[30] Garrett McGrath and Paul R Brenner. 2017. Serverless computing: Design, im-
plementation, and performance. In 2017 IEEE 37th International Conference on
Distributed Computing Systems Workshops (ICDCSW). IEEE, 405–410.

[31] Roberto Morabito, Vittorio Cozzolino, Aaron Yi Ding, Nicklas Beijar, and Jorg
Ott. 2018. Consolidate IoT edge computing with lightweight virtualization. IEEE
Network 32, 1 (2018), 102–111.

[32] Stefan Nastic, Thomas Rausch, Ognjen Scekic, Schahram Dustdar, Marjan Gusev,
Bojana Koteska, Magdalena Kostoska, Boro Jakimovski, Sasko Ristov, and Radu
Prodan. 2017. A serverless real-time data analytics platform for edge computing.
IEEE Internet Computing 21, 4 (2017), 64–71.

[33] Hai Duc Nguyen, Chaojie Zhang, Zhujun Xiao, and Andrew A Chien. [n.d.]. Real-
time Serverless: Cloud Resource Management for Bursty, Real-time Workloads.
([n. d.]).

[34] Jussi Nupponen and Davide Taibi. 2020. Serverless: What it is, what to do and
what not to do. In 2020 IEEE International Conference on Software Architecture
Companion (ICSA-C). IEEE, 49–50.

[35] Andrei Palade, Aqeel Kazmi, and Siobhán Clarke. 2019. An evaluation of open
source serverless computing frameworks support at the edge. In 2019 IEEE World
Congress on Services (SERVICES), Vol. 2642. IEEE, 206–211.

[36] Duarte Pinto, João Pedro Dias, and Hugo Sereno Ferreira. 2018. Dynamic alloca-
tion of serverless functions in IoT environments. In 2018 IEEE 16th International
Conference on Embedded and Ubiquitous Computing (EUC). IEEE, 1–8.

[37] R Arokia Paul Rajan. 2020. A review on serverless architectures-function as a
service (FaaS) in cloud computing. TELKOMNIKA 18, 1 (2020), 530–537.

[38] Hossein Shafiei, Ahmad Khonsari, and Payam Mousavi. 2019. Server-
less Computing: A Survey of Opportunities, Challenges and Applications.
arXiv:1911.01296 [cs.NI]

[39] Davide Taibi, Nabil El Ioini, Claus Pahl, and Jan Raphael Schmid Niederkofler.
2020. Patterns for Serverless Functions (Function-as-a-Service): A Multivocal
Literature Review. In 10th International Conference on Cloud Computing and
Services Science (CLOSER 2020). 181–192.

[40] Davide Taibi, Nabil El Ioini, Claus Pahl, and Jan Raphael Schmid Niederkofler.
2020. Serverless Cloud Computing (Function-as-a-Service) Patterns: AMultivocal
Literature Review. In Proceedings of the 10th International Conference on Cloud
Computing and Services Science (CLOSER’20).

[41] Davide Taibi, J. Spillner, and K. Wawruch. 2021. Serverless Where are we now
and where are we heading? IEEE Software 38, 1 (2021).

[42] Erwin Van Eyk, Lucian Toader, Sacheendra Talluri, Laurens Versluis, Alexandru
Ut,ă, and Alexandru Iosup. 2018. Serverless is more: From paas to present cloud
computing. IEEE Internet Computing 22, 5 (2018), 8–17.

[43] Ashkan Yousefpour, Caleb Fung, Tam Nguyen, Krishna Kadiyala, Fatemeh Jalali,
Amirreza Niakanlahiji, Jian Kong, and Jason P Jue. 2019. All one needs to know
about fog computing and related edge computing paradigms: A complete survey.
Journal of Systems Architecture 98 (2019), 289–330.

https://doi.org/10.1016/j.iot.2020.100273
https://doi.org/10.1049/pbpc033e_ch12
https://doi.org/10.1049/pbpc033e_ch12
https://doi.org/10.1007/s10723-019-09491-1
https://doi.org/10.1109/MS.2020.3030803
https://doi.org/10.1109/TPDS.2020.3028841
https://doi.org/10.1145/3403955
https://doi.org/10.1145/3403955
https://arxiv.org/abs/1911.01296

	Abstract
	1 Introduction
	2 Background
	2.1 Serverless
	2.2 Edge Computing

	3 Serverless Edge Computing Paradigm
	4 Opportunities
	4.1 Pure Pay-per-use
	4.2 Always-on Mitigation
	4.3 Event-driven Applications
	4.4 Stateless Life-cycle
	4.5 Parallelizing Computation
	4.6 Storage Isolation
	4.7 Fine-grained Auto-scaling
	4.8 CPU-bound Applications
	4.9 Bursty Workloads
	4.10 Custom-made Solutions
	4.11 Cloud to Edge Integration

	5 Open Issues
	5.1 Cold Starts
	5.2 Impracticable Cost-efficiency
	5.3 Continuous Workloads
	5.4 Edge Artificial Intelligence (AI)
	5.5 Location-agnostic
	5.6 Energy-agnostic
	5.7 Distributed Networking
	5.8 Data-shipping Architecture
	5.9 Brief Resources Specifications
	5.10 Reliability and Fault Tolerance
	5.11 Resource Inefficiency
	5.12 Security
	5.13 No GPU Support
	5.14 Function Triggering
	5.15 Simulation Tools
	5.16 Vendor lock-in

	6 Conclusions
	References

