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Abstract— The assets in Industry 4.0 are categorised into 

physical, virtual and human. The innovation and popularisation 

of ubiquitous computing enhance the usage of smart devices: 

RFID tags, QR codes, LoRa tags, etc. for assets identification and 

tracking. The generated data from Industrial Internet of Things 

(IIoT) eases information visibility and process automation in 

Industry 4.0. Virtual assets include the data produced from IIoT.  

One of the applications of the industrial big data is to predict the 

failure of manufacturing equipment. Predictive maintenance 

enables the business owner to decide such as repairing or replacing 

the component before an actual failure which affects the whole 

production line. Therefore, Industry 4.0 requires an effective asset 

management to optimise the tasks distributions and predictive 

maintenance model.  This paper presents the Genetic Algorithm 

(GA) based resource management integrating with machine 

learning for predictive maintenance in fog computing. The time, 

cost and energy performance of GA along with MinMin, MaxMin, 

FCFS, RoundRobin are simulated in the FogWorkflowsim.  The 

predictive maintenance model is built in two-class logistic 

regression using real-time datasets. The results demonstrate that 

the proposed technique outperforms MinMin, MaxMin, FCFS, 

RoundRobin in execution time, cost and energy usage. The 

execution time is 0.48% faster, 5.43% lower cost and energy usage 

is 28.10% lower in comparison with second-best results. The 

training and testing accuracy of the prediction model is 95.1% and 

94.5%, respectively. 

 
Index Terms—Fog computing, Industry 4.0, Internet of Things, 

predictive maintenance, resource management  

I. INTRODUCTION 

HE exponential growth of new generation computing such 

as cloud edge computing, Internet of Things, big data,  

cyber-physical system (CPS) etc., contributes substantially 

in the manufacturing industry to accomplish a more proficient, 

competing and smart  manufacturing. Smart manufacturing 

represents as a future-condition of manufacturing, where the 

ongoing transmission and analysis of data from shop floor 

produces manufacturing knowledge, which has a positive effect 

over all parts of activities. The Industrial Internet of Things 

(IIoT) is an extension of the Internet of Things (IoT) to use in 

industrial sectors. IIoT mainly gathers the massively 
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interconnected sensors industrial data at the shop floor to 

produce information, knowledge and control manufacturing 

system [1]. The utilisation of IIoT incorporates infrastructure, 

maintenance, process control and supply chain.  

GE intelligent platform reports that a health care product 

manufacturer creates 5,000 samples each 33 milliseconds, 

likeness 4 trillion of samples each year [2]. Manufacturing 

factory with one hundred machines tools and ten cameras 

generate 72 TB of data per year [3]. Conventional in-house 

servers with constraining resources, i.e. storage, memory, 

processing power are not fit for processing the new challenging 

due to scalability and computational complexity and shall 

deploy in cloud datacentre. However, simulation research in [4] 

concludes that cloud data centre potentially experiences higher 

latency and network usage due to the vast geographical distance 

between IIoT devices and cloud data centre. Fog computing as 

an expansion of cloud computing to the edge of system 

networking consists of cloud and edge resources that reduces 

the latency and network congestion. Therefore, latency-

sensitive applications can be executed in fog computing.  

A distributed system refers to multiple systems that are 

interlinked while appearing as a single system to the user to 

enhance resource sharing [5]. Resource management in a 

distributed system is a fundamental process that involves 

resource scheduling and allocating resources to applications 

[6]. Genetic Algorithm (GA) has been generally applied to 

improve and optimise the resources allocation, and GA is one 

of the most dependable and promising metaheuristics [7]. GA 

is part of the evolutionary algorithm, where it is inspired by the 

evolutionary theory and nature process selection.  

The assets in the manufacturing sector include physical asset, 

human asset, and virtual asset. The reduction of tag cost and 

infrastructure cost greatly enhance the usage of RFID, 1D 

barcodes, QR codes, BLE tag, and LoRa tag in assets 

management. Open Platform Communications United 

Architecture (OPC UA) is the primary data exchange standard 

for industrial communication recommended by Reference 

Architecture Model for Industry 4.0 (RAMI 4.0). OPC UA 

allows the primary physical assets (manufacturing equipment) 
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to communicate with each other or to exchange information 

with the gateway.  

A. Motivation and our contributions 

Industry 4.0 enhances the productivity of manufacturing 

technologies through collection and analysis of real-time data. 

The ease of communication in IIoT enables real-time tracking 

and identification of assets within businesses originating from 

IIoT sources and information services.  Industrial big data 

generated from IIoT sensors promotes information visibility. 

One of the critical applications in manufacturing is to predict 

the condition of manufacturing equipment. Therefore, there is a 

requirement of an efficient and effective resource management 

technique to handle the generated data. To this end, Genetic 

Algorithm (GA) seems a promising approach as GA is 

favourable in band selection, smaller size classification, 

training and testing accuracies compared to existing works. 

 

The main contributions of this research paper are: 
1. Proposed resource scheduling technique: Genetic 

Algorithm (GA) for assets management in Industry 
4.0. 

2. Simulated GA with various scheduling techniques, 

namely MinMin, MaxMin, FCFS and RoundRobin. 

The performance metrics are time, cost, and energy. 

3. Optimised the Decision Support System (DSS) in the 

production line by implementing predictive 

maintenance. 

4. Presented a detailed case study of manufacturing 

equipment predictive maintenance using GA and 

two-class logistic regression. 

5. Proposed promising future directions for this research 

paper. 

B. Article organisation 

The rest of the paper is organised as follows. Section II 

presents the literature review of existing techniques. Section III 

describes the proposed resource management technique. The 

experimental setup and case study are presented in Section IV. 

Section V presents the results of the evaluation. Section VI 

concludes the paper and further work. 

II. RELATED WORKS 

 Institute of Asset Management (IAM) built up a theoretical 

model for physical, virtual and human asset management. IAM 

assembled the six key subjects for assets management, to be 

specific, (1) strategy and planning, (2) asset management 

decision making, (3) lifecycle delivery, (4) asset information, 

(5) organisation and people, and (6) risk & reviews [8].  

 Authors proposed a novel classification for multi-unit 

systems asset management into the fleet and portfolio according 

to a variety of assets and intervention options [9]. Fleet referred 

to as a system of homogeneous assets while portfolio was a 

system of the heterogeneous asset. The dependencies in multi-

unit systems are categorised into performance, stochastic and 

resource. Then the authors concluded that safety and reliability 

for multi-unit systems were complex models that involved 

various criteria from various dimensions. 

 Service placement policy, namely MinRE introduced with 

the aims to supply high QoS for IoT devices and to lower energy 

consumption in fog computing [10]. Authors classified the 

services into critical and normal. The goal of critical service 

was to reduce the responding time while normal service to 

lower energy consumption. MinRE organised the services in 

ascending order based on the deadline and priority was given 

based on the classified services. The policy was evaluated 

through simulation experiment and the results evidenced that 

MinRE outperformed cloud-only, edge-ward and resource-

aware. 

 Denial of Service (DoS) attack prevention and energy 

conservation was an essential concern in IoT [11]. Received 

Signal Strength (RSS) was introduced to prevent DoS and 

conserved energy. RSS measured the receiving signals power 

to determine if the attacker on the same network using 

Teaching-learning-based optimization (TLBO) algorithm. 

Simulation results suggested that RSS was able to locate 

attacker within 12cm and the false alarm probability was 0.7%. 

 Load balancing mechanism depends on Jena architecture and 

Contract-Net Protocol (CNP) to manage the smart 

manufacturing equipment at the floor level posited by [12]. 

Firstly, resources ontology model was introduced to collect and 

visualise the knowledge for sharing, reusing and reasoning. 

Jena reasoning inputted the base model from ontology to extract 

the hidden information and decided the operating mode. CNP 

received the input from Jena reasoning to distribute the 

resources through three mechanisms (1) open tender, (2) 

bidding, and (3) winning mode.  

 Containerisation for resource allocation in the fog computing 

instead of virtual machine (VM) application is proposed by 

[13]. This was due to the container was more lightweight and 

had higher efficiency compared to VM. The concept was 

supported with simulation experiments where the container 

outperformed the VM. The authors proposed a novel task 

scheduling algorithm based on threshold evaluation to amplify 

the jobs in fog nodes and to diminish the jobs delays. However, 

this research did not take consideration of the fitness of cloud 

resources and neglected the cloud computation time.  

 Lightweight architecture system with cloud and edge, 

namely, SERENA, to implement predictive analytics platform  

[14]. SERENA collected the sensors data in edge gateway and 

processed the information in the hybrid cloud. SERENA 

managed the deployment in Docker service and utilised the load 

balancing from Docker to distribute the tasks. SERENA 

enabled the predictive analytic service to examine the condition 

of manufacturing equipment using three different machine 

learning algorithms: (1) decision tree, (2) gradient boosted tree, 

and (3) random forest.  

A. Critical analysis 

TABLE 1 shows the comparison of the proposed resource 

management technique with existing works. All of the current 

work only considered physical assets without considering 

virtual and human assets except [8]. Physical, virtual and 

human assets are equally crucial for the growth of business in 

Industry 4.0. Predictive maintenance model enables the team to 

fix the problem before equipment failure. However, only [14] 

highlights equipment predictive maintenance and resource 

scheduling in their work. None of the existing literature  
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considered all the three performances metrics: time, energy and 

cost in their proposed resource management technique for 

physical, virtual and human assets. Owning to the reasons 

mentioned above, current literature becomes inefficient when 

solving real-life Industry 4.0 manufacturing problem where 

Industry 4.0 links automation, equipment, labour and software 

altogether and requires fog computing for low latency. 

Therefore, it is necessary to build up a resource management 

technique that comprises of physical, virtual and human assets 

for Industry 4.0. Time, cost and energy of the resource 

management technique should be taken into consideration. The 

industrial big data from IIoT sensors shall be fully utilised in 

the predictive maintenance application. This paper addresses 

the challenges of existing resource management technique. 

III. PROPOSED TECHNIQUE 

This section presents a detailed description of the proposed 

system architecture for assets management and resource 

scheduling technique to handle the incoming tasks from IIoT 

sensors. Especially in this paper, the question is being 

responded: How to manage the assets in Industry 4.0 effectively 

using GA and astutely utilise the industrial big data to minimise 

manufacturing equipment failure through supervised machine 

learning? 

A. System architecture 

Fig. 1 presents the proposed system architecture of assets 

management. The architecture consists of five layers: asset, 

perception, network, fog computing and cloud computing 

according to their functionalities. 

Asset layer contains all the resources with economic values 

owned by the business with the expectation to produce value. 

The assets are identified as primary physical, supporting 

physical, virtual, and human. Primary physical assets are the 

central elements that required for manufacturing and the 

manufactured products. The central elements are different 

manufacturing equipment and automation equipment that 

varies according to the nature of the industry. Supporting 

physical assets are the elements that enable and keep the 

primary manufacturing process going. Virtual assets enable 

digitalisation in the business and manufacturing process 

through the integration of IT software. Humans such as 

employees, vendors, customers, and end customers are the 

parties that directly involved in the life cycle of manufactured 

products. Employees are necessary to conduct manual 

operation, maintenance, problem-solving that cannot be 

replaced by automation equipment. 

 

 

 

 

 

 

 

 

 

 

 

 

Perception layer consists of industrial smart sensors to 

gather the environmental and product information. Industrial 

smart sensors and meters installed in the equipment are able to 

detect and send physical parameters for prediction 

maintenance. Vision sensors are able to read the QR code and 

barcode which contains vulnerable information such as asset 

type, location, date of purchase etc. about the assets. Facial 

recognition eases human resource management by reducing 

time fraud and employees’ access control.  

Network layer is in charge of transmitting the real-time date 

from sensors to network devices, fog computing and computing  

layers. Business owners with multiples manufacturing plants in 

the whole world can be linked together to a global business 

through satellite communications. Wired, wireless and Intranet 

connections allow the communication of assets within the 

business. 

Fog computing layer creates communication between edge 

devices and the cloud datacentre [15]. Fog computing is a 

distributed decentralised system and allows the data to send to  

the server to process locally. Fog computing enables real-time 

assets analytic applications due to the nature of low latency and 

bandwidth connections compared to the cloud. Cloudlet and 

micro cloud are small scale data centres situated at the edge of 

the network. The smart switch allows digital facilities 

management to create sustainability and greener environment. 

Meanwhile, the application server allows the server to run 

industry-specified software individually. The router at fog 

computing levels enables several IIoT applications such as data 

acquisition, smart metering and distribution automation. 

Cloud computing layer allows resources management, 

industrial big data, and IIoT tasks processing [15]. Pre-

processing, training, testing, prediction and model deployment 

of industrial big data are performed at this level due to the cloud 

offer flexibility: pay as you go. Cloud allows resources 

management and scheduling according to the policies of the 

business. 

B. Scheduling: Genetic Algorithm (GA) based resource 

scheduling technique 

Genetic Algorithm (GA) mimics Darwin’s theory of 

evolution, where the fittest survive in nature and GA works 

based on state-space search. In nature, the fitter organism has a 

higher survival rate and able to possess their genes to the next 

generation through reproduction. This allows the new and fitter 

generation better to adapt themselves in nature. GA starts with 

a set of variables, where the number of chromosomes denotes 

as population. Their fitness value assesses new solutions 

(offspring). GA utilises three operators: (1) selection, (2)  

TABLE 1 Comparison of proposed resource management technique with existing work. 

Work Asset Equipment 

prediction 

maintenance 

Fog/ cloud/ 

Local 

Performance metrics Method 

Physical Virtual Human   Time Energy Cost  

[8] (Backman et al. 2016)  ✓ ✓ ✓  Local    N/A 

[10] (Hassan et al. 2015) ✓    Fog ✓ ✓  Policy: MinRE 

[11] Ghahramani et al. 2020) ✓  ✓  N/A    N/A 

[12] (Wan et al. 2018) ✓    Cloud  ✓  Load balancing based on Jena 
reasoning and CNP 

[13] (Yin et al. 2018) ✓    Fog ✓   Containerisation 

[14] (Panicucci et al. 2020) ✓   ✓ Fog    Load balancing 

This work (proposed) ✓ ✓ ✓ ✓ Fog ✓ ✓ ✓ GA-based 
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crossover, (3) mutation to improve the solutions in each 

generation. The selection includes picking the parents’ feature 

vectors from the same generation as indicated by the fitness 

value. Meanwhile, the main objective of crossover is to ensure 

the parents’ genes are exchanged, and the offspring inherits the 

combined genes of parents. Zero cross rate implies no crossover 

has taken place and the offspring is an exact copy of parents. 

Crossover alone does not introduce a new feature vector to the 

offspring and possible to lead to similar solutions in the new 

generations. Mutations are introduced to cause random 

changes in the locus (positions in the chromosome). The 

offspring are then being placed in the new generations until the 

end condition is fulfilled. GA can solve resource scheduling 

problem due to the following characteristics: 

1. GA is favourable in band selection, smaller size 

classification, training and testing accuracies in 

contrast to ABC and PSO. 

2. GA initialises the search from population points 

instead of a single point.  

3. GA is a direct method for global search and thus 

avoid trapping in local optima. 

TABLE 2 presents the detailed terminology used in this 

research paper. 

IV. PERFORMANCE EVALUATION 

To show the practicality of the proposed strategy, this section 

executes and deploys a case study on the present reality physical  

 
1 FogWorkflowSim -https://github.com/ISEC-AHU/FogWorkflowSim 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

asset: manufacturing equipment predictive maintenance on 

FogWorkflowSim1 and Microsoft Azure Machine Learning 

Studio. 

A.  Case study: Manufacturing equipment predictive 

maintenance 

In the manufacturing industry, manufacturing machine such 

as die casting machine, laser cut machine, plasma cutting 

machine etc. are the essential equipment to produce goods for 

customers. However, unforeseen machine failure and 

components failure can lead to production line stoppage. The 

domino effects of unplanned production stoppage include delay 

in delivery, industrial consequences links to processes, and 

financial losses. 

The arrival of Industry 4.0 and industrial big data has created 

a contemporary opportunity for manufacturing equipment 

predictive maintenance. Predictive maintenance utilises the 

IIoT sensors to collect, evaluate and analyse the real-time 

condition of the manufacturing equipment. The benefits of 

predictive maintenance include maintaining high Overall 

Equipment Efficiency (OEE), early warning of anomalies, and 

awareness of the health condition of the equipment. 

This case study runs on a desktop computer with 

configurations as described below: 

• Processor: Intel Core i9-9960X CPU@ 3.10 GHz 

• RAM: 64 GB 

• System type: Windows 10 64-bit OS 

TABLE 2 GA terminology. 

GA 

Terminology 

Description 

Population 

size 

The number of job requests from IIot sensors and 

devices. Represented by the number of chromosomes 

in one iteration/ generation. 

Number of 
iterations 

The number of generations 

Cross rate The probability of accepting a new feature vector of a 

job 

Mutation rate The random probability where the elements inside the 
feature vectors are flipped or changed. Changes caused 

by errors while copying parents’ feature vectors. 

Gene Contained inside the feature vector 

 
Algorithm 1 GA based resource scheduling technique 

1. Begin   

2. Input: utilisation metrics as feature vectors 
3. Output: scheduling decision 

4. generate n population   

5. t=0   
6. while (not terminating condition) do   

7.     begin   

8.         compute fitness function   
9.         t=t+1   

10.         select two parents’ feaure vectors   
11.         apply crossover to feature vectors to generate 

offspring  

12.         apply mutation to offspring   
13.         replace previous population   

14.     end   

15. return best offspring from population 
16. end while   

17. End  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1 System architecture. 
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B. Datasets 

The datasets used in this research paper are available at: 

Original (Highly imbalance): https://bit.ly/2VyZY5i 

Amended (Under-sampling technique): https://bit.ly/37uVGS9 

The datasets used for this case study is created by Fidan 

Boylu Uz. Due to corporate confidentiality and intellectual 

property, the data of attributes are represented by general word 

and numerical number. The dataset contains eleven attributes 

that identify the condition of manufacturing equipment: (1) 

datetime: recorded date and time, (2) machineID: physical 

assets identification number, (3) errorID: the error code, (4) 

volt: electrical voltage in Volt, (5) rotate: rotational speed, (6) 

pressure: measured pressure, (7) vibration: measured vibration, 

(8) comp: components replaced (9) model: type of equipment, 

(10) age: age of the equipment (11) failure: 0 or 1. However, 

the dataset is highly imbalance, where it contains 6,663 samples 

(2.28%) of class ‘1’ and 285,006 samples (97.72%) of class ‘0’. 

The imbalance dataset will result in high accuracy model even 

without training.  

The dataset is then processed with the under-sampling 

technique to overcome the imbalance issue. Under-sampling 

technique randomly reduces the majority class to match the 

number with minority class. Consequently, the total amount of 

samples has reduced to 14,482, where 6,663 samples of class 

‘1’, and 7,819 samples of class ‘0’. 

C. Implementation of the proposed techniques in 

FogWorkflowSim 

In the FogWorkflowSim, the simulation environment 

considers four end devices (voltage sensors, pressure sensors, 

vibrational sensors, rotational sensors), five fog nodes 

(cloudlet, micro cloud, smart switch, application server, smart 

router) and one cloud server for this case study. The MIPS 

values and the execution cost of each device are as suggested in 

[16]. 

 The selection of the parameters, especially cross rate and 

mutation rate in the GA algorithm are problem dependent. The 

parameters shown in TABLE 5 are tuned carefully according to 

previous studies [16]–[19] to optimise the performance 

matrices such as time, energy and cost. The performance 

metrics are obtained from equations (1-6) [20], [21]. The 

population size and number of iterations are fixed to keep the 

computational time low.  

Execution time, t: 𝑡𝑖
𝑡𝑜𝑡𝑎𝑙 = 𝑡𝑖

𝑡𝑟𝑎𝑛 + 𝑡𝑖
𝑒𝑥𝑒 + 𝑡𝑖

𝑟𝑒𝑐 + 𝑡𝑖
𝑚𝑖𝑔

  (1) 

𝑡𝑖
𝑡𝑟𝑎𝑛 denotes transmission time from end devices to fog server, 

𝑡𝑖
𝑒𝑥𝑒  represents execution time at fog server, 𝑡𝑖

𝑟𝑒𝑐is transmission 

time from fog server to end device and 𝑡𝑖
𝑚𝑖𝑔

 refers to task 

migration time to different fog server because of the motion of 

the end device. 

Cost, C: 𝐶𝑖
𝑡𝑜𝑡𝑎𝑙 = 𝑇𝑖

𝑓𝑜𝑔
× 𝐶𝑓𝑜𝑔 + 𝑇𝑖

𝑐𝑙𝑜𝑢𝑑 × 𝐶𝑐𝑙𝑜𝑢𝑑  (2) 

Where 𝑇𝑖
𝑓𝑜𝑔

 is workflow task at fog server, 𝑇𝑖
𝑐𝑙𝑜𝑢𝑑  is workflow 

task at cloud server, 𝐶𝑓𝑜𝑔 denotes unit price per second in fog 

server and 𝐶𝑐𝑙𝑜𝑢𝑑 represents a unit price per second in cloud 

computing. 

Energy usage, E: 𝐸𝑖
𝑡𝑜𝑡𝑎𝑙 = 𝐸𝑖

𝑥 + 𝐸𝑖
𝑦

+ 𝐸𝑖
𝑧  (3) 

𝐸𝑖
𝑥 =

𝐷𝑎𝑡𝑎 𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑠𝑠𝑖𝑜𝑛

𝐵𝑎𝑛𝑑𝑤𝑖𝑡ℎ
× 𝑃𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑠𝑠𝑖𝑜𝑛  (4) 

𝐸𝑖
𝑦

=
𝑇𝑎𝑠𝑘 𝑤𝑜𝑟𝑘𝑙𝑜𝑎𝑑

𝑇𝑎𝑠𝑘 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 𝑠𝑝𝑒𝑒𝑑
× 𝑃𝑖𝑑𝑙𝑒   (5) 

𝐸𝑖
𝑧 =

𝑇𝑎𝑠𝑘 𝑤𝑜𝑟𝑘𝑙𝑜𝑎𝑑

𝑇𝑎𝑠𝑘 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 𝑠𝑝𝑒𝑒𝑑
× 𝑃𝑒𝑛𝑑 (6) 

𝐸𝑖
𝑥represents transmission energy from end devices to fog 

server, 𝐸𝑖
𝑦

denotes idle energy utilisation of the end devices, 𝐸𝑖
𝑧 

is the load energy utilisation.  

 The purpose of scientific workflow is to show the 

dependencies between tasks and manage the data flow. 

Montage workflow with 60 jobs is found to be able to optimise 

the performance matrices. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

TABLE 3 illustrates the configuration settings in the 

FogWorkflowSim. TABLE 4 shows the GA settings, while 

TABLE 5 describes the type of workflow and total job. 

D. Two-class logistic regression equipment predictive 

maintenance in Microsoft Azure Machine Learning 

The purpose of this case study is to predict the condition of 

manufacturing equipment using two class logistic regression 

algorithm, where 0 implies healthy equipment; meanwhile, 1 

denotes equipment failure. The dataset is obtained from Section 

IV(B). The attributes that determined the failures are: errorID, 

volt, rotate, pressure, vibration, comp, age. The dataset is 

divided into training and testing set in the ratio of 70:30. The 

training dataset is used for building up the prediction algorithm 

while testing dataset enabled the model assessment on the real-

time data. TABLE 6 describes the best parameters for two-class 

logistic regression after tuning. For deployment, the 

maintenance team can predict the equipment condition based 

on the real-time data input through RESTful API or Microsoft 

Excel. The complete workflow for this case study is available 

at https://bit.ly/2I5uP6u. 

TABLE 3 Fog environment setting in FogWorkflowSim 

Parameters End 

Device 

Fog Nodes Cloud 

Server 

Number of devices 4 5 1 

Million instructions 

per second (MIPS) 

1,000 1,300 1,600 

Execution Cost (C$) 0 0.48 0.96 

 
TABLE 4 Genetic Algorithm (GA) setting in FogWorkflowSim 

Parameters Value 

Population size 50 

Number of iterations 100 

Cross rate (%) 85 

Mutation rate (%) 1 

 

TABLE 5 Workflow setting in FogWorkflowSim 

Parameters Input 

Workflow type Montage 

Total job 60 

 

TABLE 6 Parameters for two-class logistic regression in 70:30 data 

splitting. 

Parameters Values 

Optimisation tolerance 0.000100009 

L1 Regularisation weight 0.10009 

L2 Regularisation weight 0.10009 

Memory size (MB) 11 

Quiet True 

Use threads True 

Allow unknown levels True 

Random number seed 12345 
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V. EXPERIMENTAL RESULTS 

A. Performance of GA in FogWorkflowSim 

Fig. 2 compares the (a) execution time, (b) operating cost, (c) 

energy usage of GA with MinMin, MaxMin, FCFS, 

RoundRobin scheduling algorithm. 

(a) Execution time: The execution time of GA is 28.1%, 

9.1%, 0.5%, 9% faster compared to MinMin, MaxMin, 

FCFS, RoundRobin respectively. The execution time 

of GA is much lower is due to the flexibility of 

parameters tuning. Crossover is the most important 

operation and enables the good characteristics of the 

individual parents to recombine. The algorithm can 

discover the solution more efficiently throughout the 

acceleration in each generation and has the lowest 

execution time among all. Furthermore, the execution 

time of GA is lower than heuristic algorithm e.g. 

RoundRobin despite the complexity of GA is due to 

job scheduler in CloudSim. When the user sends a 

high number of job requests to the cloudlet 

simultaneously, CloudSim is not able to execute them 

and job scheduler places the requests in a queue 

system. Job scheduler positions and executes the job 

request from the lowest execution time to the highest 

and send back to the user. This leads to lower 

execution times of the GA method. 

(b) Cost: The cost of GA is 28.1%, 94.2%, 93.8%, 93.7% 

lower compared to MinMin, MaxMin, FCFS, 

RoundRobin respectively. GA optimises the 

distribution of tasks and has a better fitness value. 

Thus this further reduces the executing cost. 

(c) Energy usage: The energy usage of GA is 3.9%, 

11.6%, 5.6%, 20.7% lesser compared to MinMin, 

MaxMin, FCFS, RoundRobin respectively. Montage 

workflow allows label-based clustering, where the 

same tasks in the workflow can cluster together. 

Instead of executing individual workload, clustered  

workload minimises the network traffic and further 

reduces energy usage. Furthermore, GA strategy tends 

to club computationally expensive tasks in resource-

intensive cloud nodes and simpler tasks in edge 

devices. This leads to a reduction in energy usage. 

B. Training and testing accuracy of predictive maintenance 

The equipment predictive maintenance employs two-class 

logistic regression to predict the health of manufacturing 

equipment. Two-class logistic regression allows good accuracy  

with fast training time [22]. Fig. 3 depicts the Receiver 

Operating Characteristic (ROC) curve of training and testing 

dataset. Setting the threshold as a constant value of 0.5 in both 

training and testing dataset, the Area Under Curve (AUC) of 

ROC is 0.990 and 0.987, respectively. AUC closer to 1 

represents a better measure of separability, whist AUC = 1 is 

where classifier impeccably recognises all positive and negative 

classes accurately. The training accuracy and testing accuracy 

of the model is 95.1% and 94.5%, respectively. TABLE 7   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

TABLE 7 Confusion matrix and measure of training and testing. 
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Fig. 2 Evaluation results for MinMin, MaxMin, FCFS, RoundRobin, 

GA: (a) Time, (b) Cost, (c) Energy 

 
Fig. 3 Training and testing of two-class logistic regression ROC curve.  

 

 

 

 

 

 

 

 

513.3631

405.8925
370.9001

405.6903
369.1315

0

50

100

150

200

250

300

350

400

450

500

550

MinMin MaxMin FCFS RoundRobin GA

T
im

e
 (

s
)

Algorithm

403.7239
438.8938

410.96

489.2693

387.8123

0

50

100

150

200

250

300

350

400

450

500

MinMin MaxMin FCFS RoundRobin GA

C
o

s
t 

(C
$
)

Algorithm

15.4009

190.0923
177.2496 175.7084

11.0739

0

20

40

60

80

100

120

140

160

180

200

MinMin MaxMin FCFS RoundRobin GA

E
n

e
r
g

y
 (

J
)

Algorithm

Authorized licensed use limited to: Queen Mary University of London. Downloaded on January 12,2021 at 11:57:46 UTC from IEEE Xplore.  Restrictions apply. 



2327-4662 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2021.3050441, IEEE Internet of
Things Journal

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 

 

7 

shows the confusion matrix along with their measures of 

training and testing dataset. 

VI. CONCLUSIONS AND FUTURE WORK 

This paper proposed the Genetic Algorithm (GA) as the 

technique for resource management in assets management 

application for Industry 4.0. Proposed system architecture 

contains five layers, including (1) assets, (2) perception, (3) 

network, (4) fog computing and  (5) cloud computing. GA was 

evaluated along with MinMin, MaxMin, FCFS and 

RoundRobin in FogWorkflowsim to show the effectiveness of 

the proposed technique. The performance metrics for the 

evaluation were execution time, cost and energy. Extensive 

simulation experiment evidenced that GA outperformed 

MinMin, MaxMin, FCFS and RoudRobin in terms of having 

the lowest execution time, cost and energy. The execution time 

was 0.48% faster, the cost was 5.43% lower and energy usage 

was 28.10% lower in comparison to second-best results. Lastly, 

a model for equipment predictive maintenance had been 

deployed using a supervised machine learning algorithm, two-

class logistic regression. The model was able to predict if the 

manufacturing equipment failing and produced an early 

warning alert for the production line. The training accuracy and 

testing accuracy for the model were  95.1% and 94.5% each. 

A. Future work 

In spite of the fact that the proposed resource management 

technique demonstrated efficiency and able to distribute the 

tasks effectively, it very well may be additionally enhanced in 

a broader scope followed by the accompanying viewpoints: 

1. Reliability and security communication: There is a 

need to ensure up-to-date industrial security 

communication among the devices to prevent 

cyberattacks.  

2. Performance metrics: The performance metrics of the 

simulation can further include network latency, 

network bandwidth, jitter. 

3. Extending to varies domains: Current paper focuses on 

the manufacturing industry. This can be extended to 

varies domains of Industry 4.0 such as construction, 

oil and gas, chemical due to the beneficial of asset 

usage, quality control, supply chain management, 

product monitoring, work environment wellbeing. 
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