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A B S T R A C T   

Global lockdowns in response to the COVID-19 pandemic have led to changes in the anthropogenic activities 
resulting in perceivable air quality improvements. Although several recent studies have analyzed these changes 
over different regions of the globe, these analyses have been constrained due to the usage of station based data 
which is mostly limited up to the metropolitan cities. Also the quantifiable changes have been reported only for 
the developed and developing regions leaving the poor economies (e.g. Africa) due to the shortage of in-situ data. 
Using a comprehensive set of high spatiotemporal resolution satellites and merged products of air pollutants, we 
analyze the air quality across the globe and quantify the improvement resulting from the suppressed anthro-
pogenic activity during the lockdowns. In particular, we focus on megacities, capitals and cities with high 
standards of living to make the quantitative assessment. Our results offer valuable insights into the spatial dis-
tribution of changes in the air pollutants due to COVID-19 enforced lockdowns. Statistically significant re-
ductions are observed over megacities with mean reduction by 19.74%, 7.38% and 49.9% in nitrogen dioxide 
(NO2), aerosol optical depth (AOD) and PM2.5 concentrations. Google Earth Engine empowered cloud computing 
based remote sensing is used and the results provide a testbed for climate sensitivity experiments and validation 
of chemistry-climate models. Additionally, Google Earth Engine based apps have been developed to visualize the 
changes in a real-time fashion.   

1. Introduction 

The impedance caused by the COVID-19 pandemic has led to 
worldwide disruptions in day-to-day human activities across the globe. 
As per the World Health Organization, 2020 (WHO) Weekly Epidemi-
ological Update issued on December 15, 2020, more than 70 million 
were infected alongside death numbers exceeding 1.6 million world-
wide. The characteristics of the virus included rapid spread from 
human-to-human making its infections difficult to contain. There has 
been an evidence of virus spreading through the air, after the WHO 
declared it a pandemic on January 30, 2020 (Zander et al., 2020). 

Almost every country was affected with frequent cases of infected but 
asymptomatic individual. Those potential virus carriers made its trans-
mission hard to track. In that scenario and unavailability of any vaccine 
hitherto, most of the countries declared lockdowns to prevent the spread 
of novel coronavirus. This led to a halt in the anthropogenic activities in 
urban and industrialized areas across the world (Jamshidi et al., 2020). 

Estimates from the United Nations show that 55% of the world’s 
population lives in urban areas as of 2018, and by 2050 close to 68% 
would be living in urban areas. By 2018, there are 33 megacities in the 
world with population more than 10 million, hosting ~12.5% of the 
world’s total urban population. Due to the high population density, 
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understanding the environmental impacts of megacities are of utmost 
concern for policy makers to ensure public health and safety. Emissions 
from the industries, automobiles, construction processes, and other 
anthropogenic activities have led to high levels of air pollution over 
megacities (Butler et al., 2008; Gurjar et al., 2008; Baklanov et al., 2016; 
Marlier et al., 2016), making them hotspot for various greenhouse gases, 
ozone precursors and aerosols observed well up to the tropopause layers 
(Brunamonti et al., 2018; Hanumanthu et al., 2020). Various studies 

have reported increased mortality rates around the world’s megacities 
caused by the air pollution. Cohen et al. (2017) reported that exposure to 
PM2.5 and tropospheric ozone (O3) caused ~4⋅2 and ~0.25 million 
deaths worldwide respectively in 2015. Gaseous pollutants like nitrogen 
dioxide (NO2), sulfur dioxide (SO2), and carbon monoxide (CO) are also 
responsible for human health hazards (WHO, 2013; US Environmental 
Protection Agency, 2015). The primary sources of nitrogen dioxide in 
the atmosphere are fossil fuel and biomass burning and various micro-
biological reactions in wildfires, lightning and soils. In addition to the 
anthropogenic sources, natural emissions such as that from the volcanic 
eruptions are also harmful to the environment in the short term and also 
modulating the global hydroclimate (Singh et al., 2020). 

Nitric oxide (NO) rapidly oxidizes to NO2 in the air and plays crucial 
role in the formation of photochemical smog, affects air quality and 
climate. The dominant impact of NOx (NO + NO2) emissions on the 
climate is through the formation of O3, the third largest single contrib-
utor to positive radiative forcing. Emissions of NOx generate indirect 
negative radiative forcing by shortening the atmospheric lifetime of 
CH4. NOx dominantly controls the O3 budget through photochemistry. It 
is well documented that high amounts of NOx emitted from the in-
dustries, thermal power plants and automobiles leads to surface ozone 
production (Lelieveld et al., 2000) and leads to the exceedances of the 
standard limit of the urban ozone concentration (Frost et al., 2006). 
Tropospheric NO and O3 are potential greenhouse gases and influence 
the lifetime of the other greenhouse gases. Also, the NOx compounds act 
as precursors for the aerosol nitrate and influences significantly the 
abundance of the hydroxyl radical (OH). Furthermore, NO2 also 

Table 1 
Timelines of COVID19 enforced lockdowns in various regions of the world ob-
tained from news articles and national reports.  

Lockdown period Region 

March 23, 2020 to May 31, 
2020 

South Asia (India and surrounding regions) 

March 23, 2020 to May 31, 
2020 

South East Asia (Thailand, Malaysia, Singapore and 
surrounding regions) 

January 24, 2020 to March 
25, 2020 

East Asia (China, Japan, Korea and neighbourhoods) 

March 23, 2020 to May 31, 
2020 

Australia and New Zealand 

March 13, 2020 to May 31, 
2020 

Europe 

March 23, 2020 to May 31, 
2020 

North America 

March 13, 2020 to May 31, 
2020 

South America 

March 30, 2020 to May 31, 
2020 

Africa and Middle East  

Fig. 1. COVID19 lockdown changes in atmospheric pollutants over Africa and Middle East: Spatial maps of percentage change in concentrations of (a) NO2 (b) 
AOD (c) Tropospheric O3 and (d) PM2.5 for the 2020 COVID19 enforced lockdown period relative to the same period in 2019. The change in concentration is 
represented as (period in 2019 corresponding to the lockdown in 2020–2020 COVID19 enforced lockdown) expressed in percentage relative to the period in 2019 
corresponding to the lockdown in 2020. The data used is from the TROPOMI instrument onboard Sentinel-5P satellite, MODIS and Sentinel-2 MultiSpec-
tral Instrument. 
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produces nitric acid (HNO3) which is a major component of acid rain by 
reacting with hydroxyl radical (OH). The sources of NOx include both 
natural and anthropogenic sources. The natural sources include atmo-
spheric flux exchanges, lighting activity, soil emissions, and forest and 
grassland fires while the anthropogenic sources are primarily through 
emissions from the power plants, transportation (automobiles, ships and 
aircrafts), industrial emissions and biomass burning (Guha et al., 2020). 
The lifetime of NOx is of the order of minutes to hours, which depends 
on various factors such as the season, location, photolysis rate and the 
concentration of hydroxyl radical (Lamsal et al., 2010). Hence, the short 
life time and the inhomogeneous source distribution of NOx clearly lead 
to the spatiotemporal variations in the NO2 concentration in the 
troposphere and it is well proven that tropospheric NO2 observed from 
the space is dominated by the amount in the boundary layer (Ghude 
et al., 2008). Total global NOx emissions have increased from an esti-
mated pre-industrial value of 12 TgN yr− 1 (Holland et al., 1999; 
Galloway et al., 2004) to between 42 and 47 TgN yr− 1 in 2000 (Solomon 
et al., 2007). The range of surface NOx emissions (excluding lightning 
and aircraft) used in the current generation of global models is 33–45 
TgN yr− 1 with small ranges for individual sources. 

Satellite observations in the past few decades have helped to study 
long-term spatial and temporal variation of pollutants around the world. 
Hilboll et al. (2013) and Georgoulias et al. (2019) studied the long-term 
trend of NO2 over the world’s megacities using multiple satellite ob-
servations. Long term trends of SO2 have also been studied across the 
world where the Asian countries show mostly increasing trends whereas 
opposite trends have been reported over North America in the recent 

decades (Lu et al., 2011, 2013; Kharol et al., 2017; van der A et al., 
2017). Using OMI/MLS satellite observation Cooper et al. (2014) re-
ported 8% relative increase in tropospheric ozone burden over northern 
hemisphere (NH) compared to southern hemisphere (SH) in recent 
times. The analysis of these satellite datasets and their pre-processing is 
cumbersome and error prone due to involved steps. Raw satellite data-
sets are available in different formats for different satellites and are 
mostly available as swath-based products in case of missions such as 
MODIS and image blocks in case of Sentinel. The analysis of these 
datasets requires them to be mapped to gridded form, necessitating the 
need of transforming to real coordinates which is a challenging task. 
Moreover, different satellites-based instruments require different cor-
rections and filters to be applied based on data quality over different 
regions and instrument-to-instrument differences. The requirement of 
large disk-space is also a challenge for many researchers, due to un-
availability of high-end computational resources at their end. 

Cloud computing offers hope in solving these challenges by 
providing cloud as a service platform for preprocessing, analyzing and 
visualizing big data (Gill et al., 2019). Google has introduced a new 
cloud-based platform called Google Earth Engine for efficient and fast 
processing of large geospatial datasets. It provides a systematic platform 
to analyze planetary-scale geospatial data to uncover robust computa-
tional capacities of Google which can be used as a source for analyzing 
problems and proposing solutions for environmental protection, climate 
monitoring, water management, food security, disease, disaster, drought 
and deforestation. Moreover, this engine is now being utilized to 
distribute and share results with others, to develop mobile apps or web 

Fig. 2. COVID19 lockdown changes in atmospheric pollutants over Australia and New Zealand: Spatial maps of percentage change in concentrations of (a) 
NO2 (b) AOD (c) Tropospheric O3 and (d) PM2.5 for the 2020 COVID19 enforced lockdown period relative to the same period in 2019. The change in concentration is 
represented as (period in 2019 corresponding to the lockdown in 2020–2020 COVID19 enforced lockdown) expressed in percentage relative to the period in 2019 
corresponding to the lockdown in 2020. The data used is from the TROPOMI instrument onboard Sentinel-5P satellite, MODIS and Sentinel-2 MultiSpec-
tral Instrument. 
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based services, interpreting various types of geospatial data, and for 
assessing land use change, monitoring climate, malaria risk mapping, 
flood mapping, urban mapping, rice paddy mapping, crop yield esti-
mation, global surface water change and global forest change. For 
example, an application based on Google Earth Engine is developed to 
detect land cover change, which has been implemented successfully in 
Singapore (Sidhu et al., 2018). Researchers from Ukraine used Google 
Earth Engine and created a high resolution crop classification map for a 
large spatial region (Shelestov et al., 2017). Further, it has been iden-
tified that machine learning techniques such as random forest and linear 
regression are working efficiently for satellite imagery processing and 
COVID-19 predictions (Tamiminia et al., 2020; Tuli et al., 2020). 

Numerous recent studies have reported improvement in air quality 
around the world due to large scale lockdown as a preventive measure to 
contain COVID-19 (Venter et al., 2020). Muhammad et al. (2020) re-
ported such an improvement using satellite data, however only over a 
short span of time i.e., the initial lockdown period. He et al. (2020) 
studied the short-term impacts of lockdowns across cities in China by 
analyzing air quality parameters such as PM2.5, PM10, NO2, O3, CO and 
SO2 using station based data. Their findings showed that large and 
wealthier cities in China had a greater reduction in air pollution than 
otherwise. Huang et al. (2020) showed that impact of COVID-19 forced 
lockdowns in improving air quality was not always apparent. Shen et al. 
(2020) studied the changes in air pollution with respect to meteorology 
by comparing the 2020 lockdown period with the 21-year long term 
means. They noted that large-scale transport of the pollutants reflected 

importance of meteorology on air quality at regional scales. Similarly, 
Chang et al. (2020) attributed enhanced haze creation during lockdown 
in China to pollutant pathways. Rodríguez-Urrego and Rodrígue-
z-Urrego (2020) reported reduction in PM2.5 over 50 most polluted 
capitals around the world. They found a 12% reduction in PM2.5 around 
the world’s most polluted capitals with Bogotá, Colombia showing the 
highest decrease (57%). Sharma et al. (2020) reported reduction in air 
pollution in 22 Indian cities during COVID-19 forced lockdown. Simi-
larly, improvement in air quality over central China during lockdown 
was also reported by Xu et al. (2020). Berman and Ebisu (2020) reported 
a reduction in NO2 and PM2.5 predominantly over the urban United 
States. They compared early and late/no business closure scenarios in 
different counties of the country and found clear reductions in the 
pollutant levels in early closure scenario over the urban counties. Li et al. 
(2020) used the WRF-CAMX model to assess lockdown induced changes 
in air quality over Yangtze river delta. They found that though the daily 
PM2.5 reduced during the lockdown, it was still high and more stringent 
measures were required for better air quality. Menut et al. (2020) also 
employed WRF-CHIMERE modelling system for understanding the 
pandemic enforced lockdown changes in air quality over the western 
Europe during March 2020. Using satellite observations Biswas and 
Ayantika (2021) reported decrease in NO2, formaldehyde (HCHO), SO2 
and Aerosol Optical Depth (AOD) over India during pre-monsoon period 
(March, April and May) compared to past three years due to COVID-19 
induced lockdown. The study reported that mitigation of ozone and 
large reductions in NO2 were associated with the muted decrease in 

Fig. 3. COVID19 lockdown changes in atmospheric pollutants over East Asia: Spatial maps of percentage change in concentrations of (a) NO2 (b) AOD (c) 
Tropospheric O3 and (d) PM2.5 for the 2020 COVID19 enforced lockdown period relative to the same period in 2019. The change in concentration is represented as 
(period in 2019 corresponding to the lockdown in 2020–2020 COVID19 enforced lockdown) expressed in percentage relative to the period in 2019 corresponding to 
the lockdown in 2020. The data used is from the TROPOMI instrument onboard Sentinel-5P satellite, MODIS and Sentinel-2 MultiSpectral Instrument. Note that the 
color scale for relative change is from − 50% to +50%. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of 
this article.) 
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particulate matter concentrations. However, our survey finds some 
limitations in these studies. Firstly, most of them have used station data 
to assess the changes in local and regional air quality which limits the 
spatial coherence and continuity, particularly the usage of PM2.5 has 
been limited in most of the recent studies. Also, there has been an 
absence of discussions about the AOD, which provides information 
about the amount of direct sunlight blocked by various particles/gases 
when it reaches the surface of Earth. Secondly, the previous analyses 
have reported the cases from brief lockdowns during the early phase of 
pandemic thereby limiting the robustness of the conclusion. Thirdly, the 
published results have mostly discussed the air quality changes in 
developed and developing city/regions while the relatively poorer re-
gions (e.g. African continental regions) have mostly been ignored. In 
addition to these factors, the existing works are limited by the spread of 
the observational networks out of the country capitals or even limited 
observations in the major cities. For example, the existing station data 
network of Central Pollution Control Board which has been used for the 
past studies over India, has a good coverage only over the national 
capital region around Delhi. 

Given its global presence, almost every country in the world has used 
lockdowns as a preventive measure to contain the further spread of 
pandemic. As seen in the literature survey, qualitatively, it has been felt 
that the lockdowns have improved air quality due to a reduction in 
emissions arising out of suppressed anthropogenic activities. Various 
studies have used station based datasets to bring out this change 
whereas others have used satellite datasets to show the improvements in 
air quality over a limited period of the lockdown. Moreover, the studies 
have been regional in nature and have also not taken into account the 

high-resolution panoply of datasets into consideration. Having noted the 
limitations in the recent studies, the present study utilizes the Google 
Earth Engine’s capabilities to quantify the changes in atmospheric pol-
lutants such as NO2, AOD, O3 and PM2.5 during the COVID forced 
lockdowns globally. We use multi-satellite high resolution datasets 
spanned over the complete lockdown period until May 31, 2020 to show 
its environmental affects over 8 major continental parts of the world. 
Cloud computing based remote sensing via Google Earth Engine is used 
and lesser reported regions in other studies such as Africa have been 
included and thoroughly explored. Additionally, we also provide Google 
Earth Engine based apps to visualize the changes in air quality over city- 
scale spatial resolutions. 

2. Data and methodology 

The Google Earth Engine, which is the first ever cloud computing 
based platform enabling processing, analysis and visualization of satel-
lite and other datasets for the planet Earth, is extensively used in this 
study. Google Earth Engine enables the processing, analyzing and 
visualization of these large datasets on the cloud. A large number of the 
datasets being made available after quality control. Hence, there is no 
need of performing any major preprocessing or storage making the 
analysis a smooth process. This study employs Google Earth Engine 
extensively for the analysis and visualization of air quality and other 
datasets. In this work it has served as a nodal point for targeted analysis 
of the quantitative environmental assessment of COVID-19 enforced 
lockdowns. The analysis is enabled by direct API calls to the requisite 
data and there is no need to download the same. Its use has catapulted 

Fig. 4. COVID19 lockdown changes in atmospheric pollutants over South Asia: Spatial maps of percentage change in concentrations of (a) NO2 (b) AOD (c) 
Tropospheric O3 and (d) PM2.5 for the 2020 COVID19 enforced lockdown period relative to the same period in 2019. The change in concentration is represented as 
(period in 2019 corresponding to the lockdown in 2020–2020 COVID19 enforced lockdown) expressed in percentage relative to the period in 2019 corresponding to 
the lockdown in 2020. The data used is from the TROPOMI instrument onboard Sentinel-5P satellite, MODIS and Sentinel-2 MultiSpectral Instrument. 

M. Singh et al.                                                                                                                                                                                                                                   



Remote Sensing Applications: Society and Environment 22 (2021) 100489

6

the large-data processing which is otherwise very tedious and error 
prone task using the traditional approaches. The access to the platform is 
provided by an application process and the APIs are available in java-
script and python. In this work, the python API has been used for 
analysis. All the codes for analysis and visualization are available at http 
s://github.com/manmeet3591/gee_lockdown. 

Satellite data products viz NO2 and tropospheric O3 are used from 
TROPOspheric Monitoring Instrument (TROPOMI; Veefkind et al., 
2012), an instrument onboard Sentinel-5 precursor (Sentinel-5P) satel-
lite. The AOD is obtained from MODIS (Schaaf et al., 2002) and par-
ticulate matter less than 2.5μ (PM2.5) are also based on the data 
assimilated MODIS product. The European Space Agency had launched 
Sentinel-5P on October 13, 2017 as a dedicated satellite to observe air 
pollution. The datasets are available in two versions i.e. Offline (OFFL) 
and Near Real-Time (NRTI). NRTI products are available earlier than the 
OFFL products, however OFFL products offer better quality than NRTI 
and hence are used in this work. The datasets from Sentinel-5P and 
MODIS provide daily measurements when the sky is clear and not 
cloudy. The data from TROPOMI is accessed using Google Earth Engine 
and is available from July 2018. Tropospheric ozone concentrations 
available for the tropical band 20oS-20oN is archived at Google Earth 
Engine servers using the raw data and cloud slicing (csa) and convective 
cloud differential (ccd) algorithms. AOD data is used from the version 6 
of combined MODIS Terra and Aqua product wherein atmospheric 
corrected data over land at 1 km horizontal resolution is provided by 
Google Earth Engine. PM2.5 is used from the Copernicus Atmosphere 
Monitoring Service (CAMS) Global Near-Real-Time accessed using 
Google Earth Engine after 4D-Var data assimilation using datasets from 

MODIS. 4D-Var is an advanced analytical method to perform data 
assimilation. Data assimilation involves combining short-range predic-
tion with in-situ measurements to provide the best approximation of 
Earth system. COVID-19 lockdown start dates are accessed from the 
news reports and popular articles. Since lockdowns were still on in 
countries, the present study considers the period up to May 31, 2020 
(Table 1). 

We calculate the percentage change of various air quality parame-
ters, which is the percentage difference of aggregated means during the 
two periods. The two periods are defined as the lockdown period for 
year 2020 (Y20) and the corresponding epoch in the year 2019 (Y19). 
For instance, to calculate the percentage change in NO2 over South Asia, 
we average the NO2 maps over Y19 and Y20 and then obtain [(Y19 – 
Y20)/(Y19)]*100 as the percentage change in NO2 over South Asia in 
Y19 relative to Y20. We also select 93 urban cities globally by first 
selecting the megacities (Mage et al., 1996; Gurjar et al., 2010, 2016; 
Baklanov et al., 2016; Cheng et al., 2016; Marlier et al., 2016), followed 
by European Union capitals and then the cities with GDP per capita 
greater than $ 25000. The changes in air quality parameters over these 
cities are also performed by the methodology above and averaging over 
the area of the city. The latitude longitude information of the cities is 
obtained from www.latlong.net. We define the extent of the cities by the 
area of the cities from these central points (latitude, longitude) which is 
also taken as the region over which we compute the pollutant concen-
tration variations. It is worthy to note that for some countries such as 
Japan and South Korea which did not enforce lockdowns, the analysis 
for the cities is not done to bring out the exact impact of lockdowns over 
the air quality. The coordinates, population and GDP data of the global 

Fig. 5. COVID19 lockdown changes in atmospheric pollutants over Europe: Spatial maps of percentage change in concentrations of (a) NO2 (b) AOD (c) 
Tropospheric O3 and (d) PM2.5 for the 2020 COVID19 enforced lockdown period relative to the same period in 2019. The change in concentration is represented as 
(period in 2019 corresponding to the lockdown in 2020–2020 COVID19 enforced lockdown) expressed in percentage relative to the period in 2019 corresponding to 
the lockdown in 2020. The data used is from the TROPOMI instrument onboard Sentinel-5P satellite, MODIS and Sentinel-2 MultiSpectral Instrument. 
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megacities along with the start and end of the lockdown enforcement 
dates are available on https://rb.gy/t7jzr8. Interactive maps of meteo-
rological fields such as land surface temperature and surface winds 
along with four air pollutants showing the absolute values of COVID19 
lockdown period in 2020 and the corresponding period from 2019 have 
been prepared as applications of Google Earth Engine. The links for the 
same can be found from section 3.9. 

3. Results and discussion 

In this section we discuss the environmental changes in 8 major re-
gions of the world due to COVID-19 enforced lockdowns. The sub-
sections describe the changes over Africa, Australia and New Zealand, 
East Asia, South Asia, Europe, North America, South America, Southeast 
Asia and the global megacities. 

3.1. Africa 

Surface station-based observations records in various African regions 
show annual mean NO2 and O3 concentrations to be in the range of 
0.9–2.4 ppb and 4.0–14.0 ppb respectively (Adon et al. 2010). However, 
during the lockdown period, the level of these pollutants reduced 
significantly over the region. The reduction in NO2 concentrations 
(Fig. 1a) are observed as blobs over urban areas with more than ~30% 
decrease over large swathes of South Africa, Botswana, Namibia, 
Angola, Tanzania, Kenya and coastal countries of West Africa. Algeria 
and Niger show a decrease by ~20% in NO2 concentrations. Over the 
Arabian Peninsula the decrease is seen only over urban areas such as 

Riyadh, Dubai, Muscat, Bahrain, Qatar and Israel. The tropospheric 
ozone product is available only from 20oS to 20oN and a 20–30% 
decrease can be seen over regions surrounding Tanzania, Zambia, 
Angola, Kenya and Congo (Fig. 1c). The African regions usually have 
high AOD values during the local dry seasons (Boiyo et al., 2017) 
coinciding with the reduced human activity. This period also overlaps 
with the lockdown periods (March–May) used in the study. However, we 
observe a decrease in the AOD (Fig. 1b) over South Africa, Botswana and 
Angola in Southern Africa by ~30–50%, over Nigeria, Ghana Cote 
d’Ivoire, Sierra Leone and parts of Niger in Eastern Africa by ~30–50%, 
over Sudan and Egypt by ~20% and parts of north Libya by more than 
50% relative to the same period (as that of lockdown period in 2020) in 
2019. In the Middle-East, parts of Saudi Arabia, Iraq and Iran show a 
decrease by ~30%. In addition, parts of Congo, Tanzania and Kenya also 
show reduction in AOD when compared with the month before lock-
down. PM2.5 concentrations across African regions have different char-
acteristics wherein West Africa has higher levels partly arising from 
dust, while the rest of Africa has anthropogenic factors dominating the 
overall concentrations (Heft-Neal et al. 2018). During the analysis 
period, reduction in PM2.5 levels can be observed over large parts of 
Namibia, western South Africa, the entire Arabian Peninsula and North 
Africa to negligible amounts during lockdown (Fig. 1d). A two-thirds 
decrease can be seen over other parts of Africa. The relative decrease 
of ~30% in NO2 over Africa is indeed significant. However, when ab-
solute values are analyzed, for example using Google Earth Engine apps, 
we can observe significant changes only over South Africa and parts of 
Namibia, Tanzania and Kenya. Over Angola, Namibia and South Africa 
decrease in NO2 concentration and in PM2.5 are almost anti-correlated. 

Fig. 6. COVID19 lockdown changes in atmospheric pollutants over North America: Spatial maps of percentage change in concentrations of (a) NO2 (b) AOD (c) 
Tropospheric O3 and (d) PM2.5 for the 2020 COVID19 enforced lockdown period relative to the same period in 2019. The change in concentration is represented as 
(period in 2019 corresponding to the lockdown in 2020–2020 COVID19 enforced lockdown) expressed in percentage relative to the period in 2019 corresponding to 
the lockdown in 2020. The data used is from the TROPOMI instrument onboard Sentinel-5P satellite, MODIS and Sentinel-2 MultiSpectral Instrument. 
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We observe that over some regions of Africa, although the change might 
seem to be large, the base value is not substantial, which can be clearly 
understood from the Google Earth Engine apps. 

3.2. Australia and New Zealand 

The regions in Australia and New Zealand have strong seasonal cy-
cles in the atmospheric pollutants’ levels. The forest fire/burning lead to 
enhanced levels apart from the contribution from human activities 
(Reisen et al., 2013). The local autumn season coincided with the 
analysis period wherein NO2 concentration reductions by ~30% can be 
seen over urban areas such as Melbourne, Sydney, Auckland, large 
swathes of New South Wales, Canterbury, Otago and Southland 
(Fig. 2a). The region does not show much change in AOD except for 
areas in Brisbane, Manawatu-Wanganui and neighborhoods of Perth and 
Auckland (Fig. 2b). The tropospheric ozone data is available only for the 
Northern part of Australia and a reduction by 15–20% can be seen 
throughout the region (Fig. 2c). PM2.5 shows large reductions (up to 
100% in many regions) over large parts of Australia and New Zealand. 
Eastern Australia shows two-third reductions in PM2.5 concentrations 
(Fig. 2d). The decrease in NO2 concentration and PM2.5 are almost 
anti-correlated over Australia and New Zealand. We observe a signifi-
cant increase in AOD over western and south-western Australia in 2020 
which might have resulted due to the forest fires in the end of 2019 and 
the beginning of 2020. However, the signal is not observed in PM2.5 
which requires further investigation. 

3.3. East Asia 

Air pollution has increased over east Asia during the last few de-
cades. The rise has come amidst the industrial growth leading to higher 
emissions mostly from the regions in China and Korea (Kim et al., 2011; 
Wang et al., 2017). The concentrations of air pollutants have increasing 
interannual trend and summer season show increased intra-seasonal 
variations (Jacob and Winner, 2009). Here in our study we note that 
NO2 concentrations show a high reduction of ~50% in the urban areas 
of China with the neighborhoods characterizing a reduction of ~33%. 
South Korea, North Korea and Japan show ~30–40% decrease in NO2 
levels (Fig. 3a). It can be seen that AOD reduced by ~50% over 
Shanghai, parts of South Korea, Beijing and regions around Xi’an. The 
regions around these centers show ~33% reduction in AOD (Fig. 3b). 
Tropospheric ozone data is not available (Fig. 3c) from the satellite over 
this region so we skip that analysis. PM2.5 shows a reduction by ~33% 
over most of the parts of China, North Korea, South Korea and Japan 
with more than 50% decrease over Mongolia and the surrounding re-
gions (Fig. 3d). It is to be noted that the color scale in Fig. 3a–d for 
relative change is from − 50% to +50%. Mongolia shows a significant 
relative decrease in NO2 which is however not much valuable consid-
ering very low base values, and western China show a significant 
decrease of PM2.5. Overall, the lockdown effects in the air pollution are 
pronounced over east Asia which resulted in improvement of the air 
quality. 

Fig. 7. COVID19 lockdown changes in atmospheric pollutants over South America: Spatial maps of percentage change in concentrations of (a) NO2 (b) AOD (c) 
Tropospheric O3 and (d) PM2.5 for the 2020 COVID19 enforced lockdown period relative to the same period in 2019. The change in concentration is represented as 
(period in 2019 corresponding to the lockdown in 2020–2020 COVID19 enforced lockdown) expressed in percentage relative to the period in 2019 corresponding to 
the lockdown in 2020. The data used is from the TROPOMI instrument onboard Sentinel-5P satellite, MODIS and Sentinel-2 MultiSpectral Instrument. 
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3.4. South Asia 

Similar to the east Asian region, the air pollution in south Asia has 
also gone up in the last few decades (Mahajan et al., 2015; Fadnavis 
et al., 2020 and references therein). The region is characterized by 
several developing economies that have paced up the industry thereby 
increasing the air pollutants. The region has strong seasonal variability 
of air pollutants dominated by the regional meteorological factors 
(Tiwari et al., 2013; Wang et al., 2017). Particularly the PM2.5 concen-
tration minima are noticed in monsoon season which rises during the 
winter time and is maintained until pre-monsoon. Surface pollutants 
over the region are dominated by the changes over Indian subcontinent. 
The COVID-19 spread and subsequent lockdowns in 2020 were imposed 
during the summer and pre-monsoon months. The changes in NO2 levels 

show reductions by more than ~30% seen all over Tier I and II cities in 
India which are concentrated over these urban areas (Fig. 4a). The 
neighboring countries also show similar characteristics with Lahore, 
Islamabad, Karachi and Dhaka seeing around ~30% reductions in NO2 
concentrations. AOD reductions can only be observed over South India, 
Indo-Gangetic plains, West Bengal and Myanmar by ~30–40% (Fig. 4b). 
For the limited region in South India over which Tropospheric ozone 
data is available, we do not see any change in the concentrations 
(Fig. 4c). A remarkable change is noticed in PM2.5 concentrations where 
reductions by ~60–70% are noted over large swathes of South Asia with 
the reductions nearing complete decimation of the species over western 
Rajasthan in India (Fig. 4d). 

3.5. Europe 

Past studies have shown that the air pollutants have distinct regional 
variability across Europe. In general NO2, NOx and PM2.5 concentrations 
are found to be higher in Southern Europe while lesser values are found 
over the regions in Western and Northern Europe (Baldasano, 2020, 
Eeftens et al., 2012). The region is dominated by the street/urban 
background concentration ratios for PM2.5 along with non-tailpipe 
emissions. Though meteorology plays an important role in the air pol-
lutants variability over Europe, this region has registered decreasing 
trends in most of the anthropogenic induced pollutants due to air 
pollution controls (Barmpadimos et al., 2012; Wang et al., 2017). With 
specific measures to curb the emissions, long term observations show 
that AOD has decreased over Europe with largest AOD variations 
occurring during winter and spring followed by some reductions in the 

Fig. 8. COVID19 lockdown changes in atmospheric pollutants over Southeast Asia: Spatial maps of percentage change in concentrations of (a) NO2 (b) AOD (c) 
Tropospheric O3 and (d) PM2.5 for the 2020 COVID19 enforced lockdown period relative to the same period in 2019. The change in concentration is represented as 
(period in 2019 corresponding to the lockdown in 2020–2020 COVID19 enforced lockdown) expressed in percentage relative to the period in 2019 corresponding to 
the lockdown in 2020. The data used is from the TROPOMI instrument onboard Sentinel-5P satellite, MODIS and Sentinel-2 MultiSpectral Instrument. 

Table 2 
Percentage change in NO2 concentrations, AOD, Tropospheric ozone and PM2.5 
of global megacities for the year 2019 relative to 2020. The first column shows 
species, the second column represents the p-value after performing 1 sample t- 
test to test the statistical significance of change in air quality parameters. The 
null hypothesis is that the mean change in percentage is 0. The third column is 
the mean percentage change for the year 2019 relative to 2020.  

Species p-value Mean (% change) 

NO2 0.0 19.74 
AOD 0.004 7.38 
Tropospheric O3 0.15 − 3.23 
PM2.5 0.0 49.9  
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summer and autumn months (Chiacchio et al., 2011). During the anal-
ysis period. We notice reductions by ~30% in the major cities of Europe 
such as Lisbon, Madrid, Barcelona, Toulouse, Monaco, Manchester, 
Birmingham, Istanbul, Moscow, Stockholm, Oslo, Helsinki and large 
parts of Germany, regions in and surrounding Paris and London 
(Fig. 5a). Lowered AOD values can be seen over cities of western Europe 
by ~20% and over eastern Europe by 30–50% (Fig. 5b). The tropo-
spheric ozone data is not available over Europe (Fig. 5c). PM2.5 con-
centrations show a reduction by ~33% throughout western Europe 
except Switzerland and by ~60–70% over eastern Europe, Sweden, 
Norway and Finland (Fig. 5d). However, a point to note is the miniscule 
absolute reductions and the base values making relative changes over 
countries such as Norway insignificant. We also see anomalous im-
provements in air quality over Switzerland are significant, however only 
over major cities such as Zurich, Lucern and Basel. The baseline in other 
regions, particularly the mountains is inherently low. However, looking 
at the absolute values from Google Earth Engine apps, it seems that the 
lockdown was highly effective as the NO2 values can be seen to have 
dropped down to near zero. 

3.6. North America 

The region was earlier a major source of emissions, however with 
strict emission regulations in the last few decades there has been a 
marked reduction in rate of increment in air pollutants (NOx, PM2.5) over 
the high-income regions of North America (Canada, United States). 
Results from past studies show that AOD and PM2.5 agree in terms of 
interannual variability and both have decreased with time. Strongest 
changes have been noted over the eastern part with moderate changes 
over the central and western parts (Li et al., 2015). During the analysis 
period, we notice further reduction in NO2 concentrations over North 
America which is visible in patches hovering over and around the urban 
areas. The East coast of the United States of America showed enhanced 
reductions in NO2 relative to the west coast. Prominent reductions can 
be seen over New York, Atlanta, Charlotte, Detroit, Chicago, Denver, Los 
Angeles, San Jose, Portland, Calgary, Edmonton, Toronto, Montreal and 
Mexico City by ~30% (Fig. 6a). Other regions around these major 
centers of decreasing NO2 show ~20% decrease in NO2. Similar char-
acteristics can be seen in the change in AOD and PM2.5 concentrations 
(Fig. 6b,d). Tropospheric ozone data is absent over North America in our 
analysis (Fig. 6c). We particularly note a large increase in NO2 in 
Western Canada, much more extended than in the highly populated 
Eastern side of the US. This is because the figure shows relative change, 
if however, we compare the absolute values, it is much less as compared 
to Eastern US. The state of Alberta and the city of Edmonton and its 
surroundings in particular have shown substantial improvements in air 
quality even in terms of absolute values. 

3.7. South America 

The region is dominated by the seasonal variability in air pollutant 
levels where biomass burning contributes maximum to the NOx vari-
ability (Castellanos et al., 2014). Concentrations of PM2.5 and NOx in the 
urban parts are mostly influenced by the traffic being the main source 
(Krecl et al., 2018). We note reduction in NO2 levels over large swathes of 
Brazil, Argentina, Chile, Peru, Columbia and Venezuela by ~20–30% 
(Fig. 7a). A 33% decrease in AOD can be observed over south-eastern 
Brazil, southern Argentina, Bolivia and Peru with the lowered values 
reaching 50% concentrated in and around Sao Paulo (Fig. 7b). We can see 
15–20% decrease in tropospheric ozone concentrations over Brazil and 
Bolivia (Fig. 7c). Large parts of South America show PM2.5 reductions up 
to ~60–70% with some regions such as the Roraima in Brazil and Santa 
Cruz, Chubut in Argentina showing complete removal of PM2.5 (Fig. 7d). 
An important point to note is the improved air quality in South Argentina 
which is poorly populated but has considerable oil production. We note as 
also from (https://www.spglobal.com/platts/en/market-insights/latest 
-news/oil/062620-argentina-extends-tightens-lockdown-puts-fresh-da 
mper-on-oil-demand-production) that Argentina went into an extended 
period of lockdown and it also consumes most of its oil. These might have 
been the reasons for improved air quality in those regions. 

3.8. Southeast Asia 

This region is also subjected to strong seasonal cycles in air pollut-
ants due to changes in the atmospheric circulation patterns, however the 
increasing emissions have a significant contribution by the biomass 
burning from Peninsular Southeast Asia (Dong and Fu 2015; Wang et al., 
2017). The finer mode PM2.5 is mostly associated with human activities 
wherein the AODs peak during the biomass burning season (Su et al., 
2010; Lalitaporn et al., 2013). It can be seen that during the lockdown 
period NO2 concentrations reduced by ~30% over Hanoi, Malaysia, 
Singapore, Jakarta, Manila and large parts of Indonesia (Fig. 8a). Other 
regions in southeast Asia also show a decrease by ~20% of NO2. Hanoi 
shows the maximum reduction in AOD by ~50% followed by Singapore 
(~30–40%) and marginal decrease in other parts of southeast Asia 
(Fig. 8b). Tropospheric ozone decreased by 20–30% throughout the 
region (Fig. 8c) and PM2.5 decreased by ~60–70% uniformly over the 
area (Fig. 8d). 

3.9. Megacities 

More than half of the human population as of 2020 delves in urban 
areas (World Urbanization Prospects, 2019). Past few decades have seen 
exponential growth in the number of these agglomerates and larger 
urban segments known as megacities. Megacities have large economies 
and are also sources of anthropogenic pollutants. In recent times, the 
health hazards posed by these pollutants in the megacities have become 

Fig. 9. Distributions of percentage change in NO2 concentrations, AOD, Tropospheric ozone and PM2.5 of global megacities for the year 2019 relative to 2020.  
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evident (Molina and Molina, 2004; Parrish et al., 2009). Urban areas 
contribute maximum to the rising emissions throughout the world, with 
more pronounced effects in the developing countries. With the rise in 
population and demands these regions are the hotspots of such air pol-
lutants. In addition to the regional analysis, we also dig into the lock-
down forced changes in the megacities around the world. We note a 
significant reduction in the pollutants considered in the study. The re-
sults are present in Table 2. We observe a statistically significant fall 
(Fig. 9) in the NO2, AOD and PM2.5 concentrations (Table 2) with the 
reductions amounting to 19.74%, 7.38% and 49.9% as the mean with 
respect to the same period in 2019 as lockdowns in the respective 
megacities in 2019. Fig. 9 shows the violin plots of the various species 
wherein the bubbles represent the distribution of the global changes. We 
also note that the pandemic forced lockdown led to limit the air pollu-
tion levels close to or below the targeted levels as prescribed by the 
WHO and UNEP led air pollution monitoring network as part of the 
Global Environment Monitoring System (Mage et al., 1996). Lima, Port 
Louis and Mumbai are the top three cities with regards to reductions in 
NO2 concentrations ~72%, ~56% and ~50% during 2020 lockdown 
relative to 2019 whereas Bogota, Guangzhou and Shenzen showed 
nominally enhanced NO2 concentrations during lockdown. Jakarta, 
Kuala Lumpur and Bangkok are the top three cities with regards to 2020 
lockdown reductions in O3 concentrations to the tune of 16%, 12% and 
10% relative to 2019, whereas Panama City, Mexico City and Manila 
show enhanced O3 concentrations relative to 2019. Riyadh, Manama 
and Abu Dhabi show the largest reductions (75.6%, 73% and 72% 
respectively) in PM2.5 concentrations during lockdown whereas Nassau 
is the only megacity showing slightly enhanced (~17%) PM2.5 concen-
trations during lockdown. The megacities Shenzen, Sao Paulo and 
Luxembourg show maximum decrease (55%, 48% and 46% respec-
tively) in AOD whereas Brussels, Panama City and Chongqing show an 
increase in AOD during the lockdown relative to 2019. 

3.10. Google Earth Engine apps 

A set of six Google Earth Engine apps have been developed to aid in 
enhanced visualization of the changes/improvements in air quality due 
to COVID-19 lockdowns. For best visualization of these apps, Google 
Chrome browser is recommended. They can be accessed from the links 
below: 

AOD: https://manmeet20singh15.users.earthengine.app/view/ao 
dlockdown. 

NO2: https://manmeet20singh15.users.earthengine.app/view/no 
2lockdown. 

Tropospheric ozone: 
https://manmeet20singh15.users.earthengine.app/view/troposph 

erico3lockdown. 
PM2.5: https://manmeet20singh15.users.earthengine.app/view/p 

m25lockdown. 
Land surface temperature: https://manmeet20singh15.users.earthe 

ngine.app/view/lstlockdown. 
Surface winds: https://manmeet20singh15.users.earthengine.app 

/view/windlockdown. 

4. Conclusions 

In this study we have used remote sensing datasets accessed via 
Google Earth Engine to assess and quantify the impact of COVID-19 
enforced lockdowns on the air pollutants across the world and over 
megacities in particular. This work has been possible only because of 
Google Earth Engine and also to the open access SENTINEL-5P and 
MODIS data from the European Space Agency and NASA. As compared 
to the air pollutants concentration for the same period in the previous 
year, we find significant reductions over all regions in the parameters 
such as NO2, AOD, tropospheric ozone and PM2.5. However, there are 
some anomalies or relative variations as well as significant differences 

between NO2 and PM2.5 variations that could justify further work to 
understand the reasons behind the variations. The satellite data are not 
available for 2018 and previous years and hence the comparison has 
only been done relative to 2019. The comparison of the COVID-19 
enforced lockdown period to post-COVID-19 period would test the sta-
tistical significance of our results which can be taken in a follow-up 
study. The main features of this study are (i) use of complete lock-
down period as compared to other works with limited time duration, (ii) 
use of multi-pollutants datasets, (iii) use of spatially contiguous satellite 
datasets enabling better understanding and (iv) understanding spatial 
distribution of the changes in air pollutants due to lockdown. As seen 
from the analysis, the consistent variation over most big cities is a good 
indication of the relationship between pollution decrease and COVID-19 
enforced lockdowns. The present study gives equal importance to Africa, 
which is less covered by observational networks and hence the infor-
mation coming out of the region is limited (Dinku et al., 2019). The 
state-of-the-art climate models have large uncertainties in simulating 
these air pollutants, and COVID-19 has provided a testbed for their 
validation. If we look at Angola, Namibia, South Africa, Australia and 
New Zealand, the decrease in NO2 concentration and PM2.5 is almost 
anti-correlated. Since both are only linked to human and particularly 
traffic reduction, further research needs to be carried out on this aspect. 
Moreover, in some areas away from megacities large variations or 
anomalous variations may not be significant if absolute values are low. 
Since regional variations in the pollutants are also affected by meteo-
rological parameters viz. winds and temperature, it is suggested to 
consider this aspect for detailed investigations. Nevertheless, this work 
can serve as a benchmark to assess the climate model simulations un-
derstanding the role of lockdown on air quality and hence can also be 
used to improve the climate model parameterizations. 
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