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Abstract—In recent years Kubernetes has become the de
facto standard in the realm of service orchestration. Despite its
great benefits, there are still numerous challenges to make it
compatible with decentralised cloud computing platforms. One of
the challenges of mobile edge computing is that the location of the
users is changing over time. This mobility will constantly alter the
proximity of the users to their connected services. One solution
to this problem is to regularly move services to computing nodes
near the users. However, distributing the services in edge nodes
only subject to user movements will result in the fragmentation
of active nodes. This leads to having active nodes that do not use
their full capacity. We have proposed a method called Mobile-
Kube to reduce the latency of Kubernetes applications on mobile
edge computing devices while maintaining energy consumption at
a reasonable level. An experimental framework is designed on top
of real-world Kubernetes clusters and real-world traces of mobile
users’ movements have been used to simulate the users’ mobility.
Experimental results show that Mobile-Kube can achieve similar
energy consumption performance to a heuristic approach that
focuses on reducing energy consumption only while reducing the
latency of services by 43%.

Index Terms—Resource Management, Energy-Efficiency,
Cloud Computing, Edge Computing, Reinforcement Learning

I. INTRODUCTION

Nowadays containerised services are ubiquitous. They pro-

vide a modular way of packing a single or set of functionalities

in separate isolated environments. The containerisation of

services provides agile development of software with DevOps

practices by easing testing, modularisation and fully automat-

ing the integration and delivery process. From the cloud

provider’s point of view, containerisation provides lightweight

and scalable deployment of cloud services. This interest in

using containerised software has led to the implementation

of production level container management and orchestration

systems. Kubernetes has become the most popular orchestra-

tion system as it provides automated solutions to tasks that

previously required numerous technologies working together

with lots of human provisioning [1].

One of the main challenges with centralised cloud com-

puting clusters is the distance of the infrastructure from the

end users [2]. Time-sensitive, real time and location-aware

services are some examples of the services that are hard to

deploy on distant cloud servers. To address this challenge, the

fog and edge computing paradigms [3] have been proposed to

distribute the computation so that it is closer to the mobile

devices. Mobile edge servers are typically smaller nodes

deployed near base stations. Typically users connected to the

services on edge nodes can access them directly rather than

through the network core. Services deployed on the edge are

highly available and usually do not suffer from the commu-

nication overhead of centralised clouds [2]. Edge clusters are

highly distributed and have limited resources compared to the

centralised clouds. Therefore, their resource management is

more difficult and requires more automated provisioning meth-

ods. Migrating services and Virtual Machines (VMs) subject to

users’ mobility is one of the objectives that has been the topic

of some previous literature [4]–[11]. This problem is studied

in a subset of edge computing called Mobile Edge Computing

(MEC) that deals with making edge computing paradigms

more accessible to mobile device users. The mobile users are

typically connected to the core network of fog devices through

base stations close to them. The edge server is placed near the

base station and can expose the service to users with lower

latency. However, mobile users typically are not static users.

Thus, the base station to which they have connected changes

over time based on their mobility. Previous works in this area

have mainly ignored the challenges of deploying their methods

on real-world orchestration frameworks like Kubernetes.

The primary focus of architectures such as mobile edge

computing [12], cloudlets [13] and fog computing [14] has

been minimizing the latency or maximizing the throughput of

services to mobile users without considering the energy con-

sumption of the edge cloud and the associated environmental

impact. Recently, however, cloud services with large providers

such as Microsoft and Amazon have increased their focus on

reducing their environmental impact by committing to carbon

neutrality by 2030 and 2040 respectively [15], [16]. It is likely

that the increasing pressure from government organizations

will result in edge clouds also considering their operating en-

ergy consumption [17]. There has been considerable research

on minimizing the energy consumption of centralized cloud

services including work on consolidation [18], geographical
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load balancing [19], the management of workloads that do not

have strict deadlines [20], consensus mechanisms for Vehicular

Ad-hoc NETworks (VANETs) [21] and the choice of cloud

architecture that should be used to support services [22].

Thus, we propose the Mobile-Kube system that considers both

overall energy consumption and the latency of service users

to provide a MEC platform with good performance for its

services and a reduced environmental impact.

The main contributions of this research work are:

• We present the Mobile-Kube system that integrates with

Kubernetes to reduce the latency of service users on

edge clusters based on users’ mobility while considering

energy consumption. Mobile-Kube models the problem of

service placement while maintaining a reasonable energy

consumption as an optimization problem and solves it

using a reinforcement learning algorithm.

• We compare several reinforcement learning methods to

determine the best reinforcement learning algorithm to

achieve a reasonable trade-off between the two aforemen-

tioned objectives. Our experiments show that IMPALA

is the best Reinforcement Learning (RL) method for this

scenario based on its data efficiency and fast convergence.

• We evaluate Mobile-Kube on the Google Cloud Platform

using a mobile user movement emulator that is based

on real-world traces. Our results show that Mobile-Kube

can achieve similar energy consumption performance to

a heuristic approach that focuses on reducing energy

consumption only while reducing the latency of services

by 43%.

II. MOTIVATING SCENARIO

In MEC networks, users are typically connected to a base

station that connects them to one of the edge servers. In most

scenarios users are typically connected to their closest base

station. As the users of mobile edge cloud move around they

might transfer from one base station and connect to another

base station that is closer as it provides a better signal. The

problem is that the service that they are connected to may

be closer to the former base station and this can result in

increased latency. One solution to this is to move the service

from their previous location to a place closer to a new base

station that the users of that service are connected to. A

greedy algorithm that just moves the service immediately to

an empty server closest to the base station can be utilised.

However, the problem with that approach is that the new

placement might result in switching on a new node which

will increase energy consumption. In this work, we try to

learn a service placement algorithm that can achieve a balance

between keeping the number of active nodes to a minimum

while providing a reasonable Quality of Service (QoS) to the

mobile users through moving services to nodes closer to the

users.

III. RELATED WORKS

Mobility Aware Service Orchestration at Edge. With

the advent of 5G and Long-Term Evolution (LTE) networks

over the past few years, the need for mobility driven service

placement methods has become more evident. Ouyang et al.
[4] have proposed a method for migrating the services to

nearby servers to the users while maintaining a reasonable

migration cost using Lyapunov optimisation. While it is not

evaluated experimentally they still have provided a strong

theoretical analysis to achieve an optimised service placement

subject to latency and a long term cost budget. Badri et
al. [23] examined the trade-off between energy consumption

and reducing the latency for QoS with service migration

through a stochastic optimisation approach. The method is

able to handle non-deterministic user movements. The cost

of relocating a service is also considered in their simulations.

Due to the Markovian nature of the service placement problem

reinforcement learning and bandit based methods have also

been used in recent years. Wang et al. [24] models the problem

as a Markov decision process under different scenarios of 1-

D and 2-D mobility. Real-world datasets have been used by

Wang et al. in [7] to show the effectiveness of an offline

reinforcement learning based approach to reduce the overall

service delay. The most similar papers to our work are [5],

[10] which have used different variations of RL for placement

of cloud services subject to the user mobility while achieving

a trade-off in energy consumption. Tang et al. [5] have used

a variation of reinforcement learning namely Q-learning to

model user movements as a Markov decision process and

have considered migration costs into account. Despite their

precise modeling of the cost and delay in edge nodes, their

implementation is not yet on the real-world production-ready

orchestration frameworks like Kubernetes. They have used

Checkpoint/Restore In Userspace (CRIU) for implementation

of the real-world containers migrations for comparison of

migration time between VMs and containers. The resource

consumption and delay are modeled and the RL algorithm

can maintain a balance between the two objectives of re-

ducing the delay and power consumption [25]. However,

their experiments have only been tested in a trace-driven

simulation environment and no integration with real-world

service orchestration systems is presented. To solve the large

state space of the MEC placement problem Brandherm et
al. and Liu et al. [6], [9] have used Multi-Agent version of

the RL algorithms in distributed settings. However, they have

used different Multi-agent algorithms. The former has used

q-learning and the latter uses actor-critic networks.

Kubernetes Limitations Ignored in previous works.
Other than the lack of the real-world implementation of the

container migration, there is another problem in the theoretical

assumptions of the previous works when it comes to deploying

them in real-world systems. Kubernetes resource models work

through the request and limit model. The request is the

amount of the resource reserved for a Kubernetes container

in each node and the limit is the maximum resources that

could be used from the cluster. The problem with some of

the mentioned previous works [8], [23] is that the requested

computational resource is reserved from the user side and a

new container is started for each user task. However, most of
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the time in reality a container could be serving many users

at the same time. Therefore, the number of containers in the

nodes for each service is determined by the cloud provider, not

the cloud user. While there have been some efforts to address

this problem when autoscaling [26], to our knowledge our

approach is the first to address this for MEC applications by

considering services with multiple connected users.

Reinforcement Learning for Resource Management.
Problems that can be expressed as a sequential decision mak-

ing process can be modelled as a Markov Decision Processes

(MDPs). MDPs are the core mathematical formalization that

is used in most of the sequential decision1 making problems.

An MDP is a model of sequential decisions that are an

abstraction of an agents’ behavior in a fully or partially

observed environment. An agent is an entity that makes the

actions. For example, in a video game, the player who moves

the controller is the agent. At each step of decision-making,

the agent receives a reward from the environment after the

action has been taken. This reward indicates the value of the

taken action. If a learning method is associated with the MDP

then this reward is a measure that is used to learn to take better

actions over the subsequent steps. The main property of the

MDPs is that the action taken at each timestamp depends only

on the current state of the environment and not any state(s)

before that. Mathematically speaking, an MDP consists of a

trajectory of states S, actions A and rewards R in the following

order:

S0, A0, R1, S1, A1, R2, S2, A2, R3, ... (1)

Dynamic resource management can be considered an example

of sequential decision making since in almost all of its

forms it involves deciding which task should be allocated to

which resource. Therefore, it can be expressed as an MDP.

This gives us robust modeling of the resource management

problem that can be used alongside methods for solving the

MDPs to allocate resources effectively. After the success of

the DeepRM [27] there is a line of research pursuing the

problem of resource allocation with RL to optimize classic

system problems. The successes of reinforcement learning

in playing games and solving control problems [28] have

motivated many researchers to take it to their domain of

interest. Some examples are device placement optimization

[29], video streaming bitrate adaptation [30], and Internet con-

gestion control [31]. As noted before, the resource allocation

problem can be expressed as an MDP. This gives rise to the

idea of using reinforcement learning in this context which is

naturally a learning model designed to solve MDPs. Other

than the modeling capabilities of the RL it is adaptable to the

incoming workload. One of the drawbacks of RL methods is

that they require a large amount of training data. Thus, the

abundance of training historical data in resource allocation

logs makes them a good fit for the problem [32].

TABLE I
NOMENCLATURE AND NOTATIONAL CONVENTIONS.

cc
Key Concept Definition

E Edge Node Set

m Number of Nodes

Ei ith node (i ∈ [1,m])

El
i Location of node i

EC
i CPU capacity of node i

EM
i Memory capacity of node i

pi Power consumed by node i

pidlei Idle power of node i

pmax
i Max power of node i

C Container Set

n Number of Containers

Cj jth container (j ∈ [1, n])

t Time interval

T Total time interval in each training episode

Cl
j(t) Location of container j at time t ((clj(t) ∈ {E})

Cr
j (t) CPU requirement of container j at time t

Cm
j (t) Memory requirement of container j at time t

M Mobile User set

o Number of mobile users

Mk kth mobile user (k ∈ [1, o])

M l
k Location of mobile userk at time t

Mr
k Container request of mobile user k at time t

dMk
Distance of user Mk from its connected service

dtotal Total system delay

dnet Network delay

dq Delay due to a lack of available resources

prtotal Total Power consumption

ut
i Resource request of node i at time t

Ct Total Cost

IV. PROBLEM FORMULATION

Let E = {E1, E2, . . . , Em} be the set of edge nodes,

C = {C1, C2, . . . , Cn} be the set of containers which host

mobile applications and M = {M1,M2, . . . ,Mo} be the set

of mobile users which connect to these applications. Each

edge node i has a location El
i , a CPU capacity EC

i and a

memory capacity EM
i . Each container j has a location at time

t which is denoted as Ct
j ∈ {E}. The resource requirements

and allocation can change with time. Thus, let Cr
j (t) and

Cm
j (t) represent the containers’ CPU resource requirements,

the containers’ memory resource requirements respectively.

We also need to consider the location of the mobile user which

can change over time and that they may use different mobile

applications at different times. Thus, let M l
k(t) represent

1In the context of reinforcement learning these decisions are referred to as
actions.
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the location of the mobile user k and Mr
k (t) represent the

application that the mobile user k is accessing.

The overall goal of the system is to minimise the energy

consumption of edge cloud and maximise the performance

of mobile applications. Maximising the performance of the

mobile applications is achieved by minimizing the total delay

of the system and the migration of containers. Its goal can be

formulated as:

minimise Ct = w1dtotal + w2ptotal (2)

subject to
∑

Cl
j∈Ei

Cr
j ≤ EC

i ∀i (3)

∑
Cl

j∈Ei

Cm
j ≤ EM

i ∀i (4)

Where w1 w2 are weights used to indicate the relative im-

portance of each sub goal. The conditions of the optimisation

problem are used to represent the resource capacities of the

edge servers.

The total delay is comprised of delays due to the network

dnet and delays due to a lack of available resources for

computation dq . It can be formulated as:

dtotal = dnet + dq (5)

dnet will vary depending on the location of the containers and

the mobile users.

dnet is computed by averaging each individual users’ expe-

rienced latency:

dnet =
o∑

k=1

dMk
/o (6)

dq will always be zero as the optimisation conditions prevent

overloading an edge server. Further work will explore relaxing

these constraints to achieve better service consolidation and

how this affects service performance.

The power pi consumed by node i is based upon the

resource request of the at node ui(t). The power consumed

by node i can be calculated as:

pi(t) =

{
(pidlei + (pmax

i − pidlei ))× ui(t), if ui(t) > 0
0, if ui(t) = 0

(7)

If the utilization is zero then the system switches the node off

and it consumes no power which is why pi(t) = 0 if ui(t) = 0.

The total power ptotal can then be calculated as:

ptotal =

m∑
i=1

pi(t) (8)

V. PROPOSED REINFORCEMENT LEARNING SOLUTION

As the user mobility and the movement of services in our

problem are sequential decision making problems preserving

the Markov [5] property, deep reinforcement learning solutions

are a good approach for them. In deep reinforcement learning

an agent tries to learn a policy π(s) that maximise the

discounted reward received from the environment. To achieve

this, it first tries to find the value of the states which is the sum

of the observed rewards from the starting state until the termi-

nal state vπ(s) = Eπ[Rt+1 + γRt+2 + γ2Rt+3 + ...|St = s].
Saving all the state values in a table is not feasible in problems

with large state-space. In deep reinforcement learning a neural

network is used to save all the values of states and at each

timestamp of the reinforcement learning algorithm, the weights

of the neural network are updated based on the received reward

from the environment. In value based reinforcement learning

the neural network receives the state of the environment as the

input and returns the state-value as the output. A maximisation

or a greedy policy step is done afterward to choose the

appropriate action from the output state values received from

the neural network. However, in policy gradient methods the

neural network returns the action directly. [33] The general

scheme of the used RL algorithms is shown in Algorithm 1.

The πθold/new
on line 6 depends on whether the old or new

policy is used based on whether the method is an on policy

or off policy RL algorithm. In our case, PG and PPO are on

policy and IMPALA is off policy.

Algorithm 1 Migration Algorithm

1: for iterations = 1, 2, . . . , N do
2: for episodes = 1, 2, . . . ,M do
3: Rb ← 0
4: Rl ← 0
5: for timesteps = 1, 2, . . . , T do
6: Run a trajectory πθold/new

for T timesteps

7: Compute the timestep latency reward rl
8: Compute the timestep binpacking reward rb
9: end for

10: Rb ← Rb + rb
11: Rl ← Rl + rl
12: end for
13: R ← w1Rb + w2Rl

14: Optimize the RL Agent policy π based on R

15: Move the containers based on π
16: end for

Agent We have used three different RL agents in our

experiments:

• PG Vanilla Policy Gradient (PG) is considered as the ba-

sis of all policy gradient RL algorithms. At each iteration

of the standard policy gradient method, an episode τ (or

a batch of episodes) is performed. Each timestep t ∈ T
of an episode is comprised of a state st, action at and

a reward received from the environment for that state-

action pair r
(
sit,a

i
t

)
. The series of all these state, action

and reward triplets constitute a full episode trajectory

τ ∼ {s1, a1, r2, ..., sT−1, aT−1, rT }. The sum of all the

rewards in a sample episode r(τ) =
∑

t r
(
sit,a

i
t

)
is used

to update the policy network π sets of parameters θ. To

reach this goal first an objective function is computed

using the logarithm of the gradients of the policy neural

network log πθ(τ) based on the policy gradient theorem
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[33].

∇θJ(θ) ≈ 1

N

N∑
i=1

∇θ log πθ(τ)r(τ) (9)

A gradient ascent step updates the weights of the policy

network:

θ ← θ + α∇θJ(θ) (10)

• PPO RL algorithms are of high variance by nature. This

means that the output actions can change in different

training iterations depending on the received random sam-

ple. The Proximal Policy Optimization (PPO) algorithm

solves this issue by constraining the next action within a

certain range at each timestep. It does so by clipping

the objective function and using a surrogate objective

function instead of the equation 10 [34].

• IMPALA is a distributed deep RL method [35]. It pro-

poses a distributed training method for one of the former

Deep RL methods named A2C. The naive policy gradient

method is a high variance method and it is not stable for

environments with high fluctuation in the reward signal.

This is because the sum of rewards r(τ) used in equation

9 are only sampled from a single episode. But due to

environment dynamics, this single episode return might

not be a good indicator of the states’ worthiness. One

of the techniques used for reducing the variance is to

have another neural network called critic which acts as

an estimator for the reward function. In each timestep, the

parameters φ of another neural network are also trained

for estimating a value function:

V π (st) =

T∑
t′=t

Eπθ
[r (st′ ,at′) | st] (11)

This value function will be a better estimate since it is an

approximation based on a series of episodes rather than a

single episode substituting the r(τ) with V π (si,ai) the

equation 9 will update to:

∇θJ(θ) ≈
∑
i

∇θ log πθ (ai | si)V π (si,ai) (12)

The update rule of the algorithm will stay the same as

equation 10. At each timestep of the A2C, it distributes

the computation of the advantage values into several

learners. IMPALA improves the training procedure by

distributing the learner into several learners. In former

distributed versions of the A2C named A3C, the updating

happens through passing the gradient to a central learner,

however, this can produce a large communication over-

head. Instead of the gradients, IMPALA directly sends the

trajectory of experiences received from multiple actors to

the central learner. The distributed actors continuously

update their policy with the latest updated policy in the

learner and then send them to the learner. This approach

increases the exploration and throughput rate. Each of

the learners does the actions based on its version of

the policy network not the latest updated version of the

policy. To solve this problem, IMPALA uses a correction

step using importance sampling called V-trace. Training

another policy μ other than the policy π that the agent

is using to act in the environment is referred to as off

policy methods. To fix the inconsistency of the actors’

policy μ with the learner policy π, in IMPALA the

value function in Eq 11 is substituted with another value

function with importance sampling to make the learners’

policy consistent with the actors’ policy.

States. Each state is derived by concatenation of two arrays

1. An array of size n, U =< u1, u2, ..., un > which the

indexes are the users’ id and each entry value indicates the

corresponding user connected station id and is a value from

the set of all available stations ui ∈ [s1, s2, ..., sm]. 2. Another

array C =< c1, c2, ..., cm > which the indexes represent the

containers and the items represent the node that the container

is placed on, and the values are from ci ∈ [n1, n2, ..., nk]. All

the discrete values are then encoded using a one-hot encoding

before being fed to the RL model. The final observation will

be the concatenation of these two parts O = U
⋃
C.

Actions. The action map is represented as an array of the

size of the containers where each of the indices represents one

of the hosts and each of the values at that index represents

the id of the host that this container is placed at the next

timestamp. This is exactly like the U part of the observations.

Reward. The reward at each timestep is calculated per

each objective according to Equation 4. For minimizing the

network latency we have Rl = 1/dtotal, and for maximizing

the number of empty servers we set the binpacking objective to

Rb = ptotal. Both of the values are then normalised according

to the network size (see Section VII for more information).

The two values are then summed up according to two weights

w1 and w2.

R = w1Rb + w2Rl (13)

RL helper. Due to the large state space of the problem,

the RL agent will face many illegal actions that try to place

containers to hosts without enough space. If we want to end

the training episode every time we face an illegal action then

we stop the agent from learning longer episodes and it makes

the training slow. To solve this problem during the training,

we assigned a negative reward to the illegal actions but we

continued the simulator traces to the next timestep. In the test

phase on the real-world Kubernetes servers, if an illegal action

is received, we skip that action and keep the servers at their

place until the next timesteps’ action.

Policy Networks. We have used a similar structure for the

policy neural network across all the reinforcement learning

agents. We have used a two-layer fully-connected network

with 64 neurons at each layer. We chose this simple architec-

ture as we did not see a meaningful difference in using more

complicated architectures when we experimentally evaluated

them.
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Fig. 1. The design of the system including of five parts (a) the controller in charge of making decisions about the placement of the services (b) The real
world Kubernetes cluster (c) Kubernetes Python API connection to the Kubernetes cluster (d) Python mobility simulator (e) Simulated connection of the users
to the services.

VI. SYSTEM DESIGN

We have designed a complete end to end experimental setup.

The implementation of the Kubernetes side is all done in real-

world Google Cloud cluster. However, the user mobility side

is simulation based on real-world data. This is due to the

difficulty of having real-world experiments with real moving

mobile users.

Kubernetes Internal Structure. Kubernetes clusters are

deployed with a number of nodes. Nodes can be considered as

the equivalent of servers in other forms of computing clusters.

A node could be a bare metal server or virtual machine of any

kind. Once a computing resource is defined as a Kubernetes

node, all the nodes of different types will look the same

from the users’ perspective. Containers in Kubernetes are the

minimum isolation level of the applications, but the smallest

Kubernetes abstraction for representing containers is another

entity called a pod. Pods are the smallest deployable unit that

presents a set of containers that share the same networking

interface. All the containers inside a pod are always co-located

in the same cluster node. Pods are ephemeral objects and

are replaced and rescheduled constantly during their lifetime.

Kubernetes services are a way of building a consistent rep-

resentation of the Kubernetes pods networking for accessing

them. This is different from the concept of the service we have

used in this work, it is just the Kubernetes internal networking

tool that we have used to expose our applications which call

a unit of them a service. The state of the cluster and all

the internal Kubernetes communications are done through the

Kubernetes API server. The API server exposes the Kubernetes

API using a rest API. In order to be able to interact with

the API server, there are many options like the Kubernetes

CLI named kubectl or other client APIs available in multiple

languages. We have used the python client API for interacting

with the API server.

Our definition of Services. Usually, real world cloud

services are made from a set of containers and stateful

and stateless microservices. For example, a streaming service

consists of a database system, authentication system, video

analytic service, and many other small decoupled modular

objects. For experimental purposes, we limit the definition

of a service to a single pod containing one single container

inside it with a Flask Python app for generating load on the

container CPU and RAM. The Flask Python app is exposed

to the outside world using Kubernetes’ service.

Load Generation Module. To emulate artificial load on

the services, we have used a model with two containerised

Flask applications. One of them called the utilisation server is

deployed as a single Flask application in one arbitrary server

outside the cluster and the other one is an application running

on all the services. At each timestamp, the utilisation server

sends the resource usage of each application to them and the

applications on the services put the load on the CPU and RAM

of the application using a Linux tool named stress-ng.

Changes to the Kubernetes default scheduler. Kubernetes

schedules pods at the beginning of their lifetime and there is

no builtin migration mechanism implemented in Kubernetes.
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However, our design needs to constantly recreate services

based on the users’ mobility. In our design, we do the

scheduling outside Kubernetes through our RL agent and

other types of decision making agents and then pass the

next pod placement to the Kubernetes cluster through the

Kubernetes Python client API. Future work will use a more

sophisticated implementation that will leverage the Kubernetes

scheduler plugin to add the scheduler as a plugin to the core

Kubernetes scheduler instead of doing the scheduling outside

the Kubernetes cluster.

Service Migration Model. Currently there is no live migra-

tion scenario implemented in Kubernetes. Once a Kubernetes

pod is scheduled on a node it cannot be moved to another node.

The solution here is to stop and restart the pod in another place.

If we want to move pod 1 from node 1 to node 2 we first start

pod 1 in node 2. Once we are sure pod 1 is up and running in

node 2 we delete its previous version from node 1. The reason

for this waiting is to make sure that the user will have access to

the service during the pod replacement process. In our design,

we schedule pods one by one instead of using a multi-threaded

version of scheduling. This is because the Kubernetes default

scheduler itself does not suggest the multi-threaded movement

of pods and advises scheduling them with a single scheduling

queue. There have been some research efforts to implement

migration mechanisms for container orchestration systems [36]

and we will explore integrating these into our system in future

work.

Energy saving mechanism. According to our energy con-

sumption objective we aim to have the minimum available

Kubernetes nodes in the cluster in order to be able to switch

them off. Since we are using virtual machines instead of

bare metal physical nodes we have not implemented a node

switching on/off mechanism. For a real-world implementation,

this can be achieved by draining the Kubernetes nodes to

release them from the Kubernetes cluster and then switching

off the physical host.

Network and Mobility. In contrast to the node and service

side, the networking side is based on simulation. We have

used the location of the towers in the San Francisco area

[37] to generate the simulation network. We have considered

co-located nodes with the stations. The nodes are then con-

nected using a minimum spanning tree. The users are always

connected to their closest base station. The users’ mobility

simulator is implemented using a real-world taxi traces in

the San Francisco area from the cabspotting dataset [38]. We

extracted the location of taxis for each five minute interval.

The dataset does not contain the location of the taxis for all

time intervals. To interpolate the missing entries we used the

Euclidean distance and path between available points.

Training. Training the system on the real-world Kubernetes

clusters is costly and time-consuming. RL agents need to be

trained on the environment in several timesteps. This makes it

infeasible to do the training on the real-world clusters. To solve

this problem, we implemented a simulator that can mimic the

dynamics of the real-world cluster during the training. We used

the trained agent outside the box in the real-world cluster.

Complete System. As it can be seen in Figure 1, our design

consist of three main parts. The first part is the Kubernetes

cluster containing our Kubernetes nodes and services. The

mobility simulator is another part that is connected to the

cluster through a simulated connection that is a Python script

assigning the users to the nodes. The placement of the nodes

and the location of the users are passed to the controller. The

controller wraps the information received from both entities

into a single environment OpenAI gym [39] environment.

The gym environment is then used to calculate the reward

based on the current observation from the environment. This

information is then passed to the RL agent to decide the

next placement of pods in the nodes. We have used the rllib

[40] library for the implementation of the RL agents. This

placement is then passed back to the Kubernetes using the

Kubernetes Python API and the pods will be moved to a new

node in the cluster. All the codebase of this project is available

at https://doi.org/10.5281/zenodo.7257394.

VII. EXPERIMENTAL SETUP

We used the Google GKE service to deploy our Kubernetes

cluster. Due to our computational budget, we performed the

experiments on eight Kubernetes nodes. All the nodes were

of e2-standard-4 type of the GKE platform with four cores

and 16 GB of Memory. We used 16 stateless containerised

services with the Flask app and the utilisation server explained

in section VI with some constant load on them2. We have

used pods of guaranteed QoS Kubernetes class which have

equal size requests and limits. All the services are of size

250 Mb RAM and 0.125 CPU. Due to the complexity of the

problem we have used constant load on the services running

on the nodes. This load is generated using the utilisation server

explained before. However, as we discussed in section VI, for

sensitivity analysis we conducted the experiments for 16, 32,

48, users3. In each scenario, a service is serving one, two,

and three users respectively. In our simulations, the station

and nodes were co-located, therefore, we have eight stations

proportional to the number of the nodes. The users move in a

radius of 37.72 and 37.78 for latitude and -122.45 to -122.38

in longitude. In Figure 2 you can see the initial placement

of nodes, servers, and users on the map. During the training

phase of the RL algorithms, we used the simulator explained in

section VI. The number of user movements available per user

in the cabspotting dataset (explained in Section VI) was not

sufficient for training the RL agent. Even with interpolation

between the locations in the dataset location of the taxis, we

ended up with 3453 locations for each taxi within five minutes

intervals. Therefore, for the training phase, we generated a

random user movements dataset within the same vicinity for

the training with 100000 user movements. However, the final

2As explained before the scheduling is based on the resource request and
not on the load of the containers. However, we put some load on them to
more closely emulate a real-world deployment.

3Scaling beyond this would require a multi-agent reinforcement learning
[6] instead of a single agent central scheduler and this will be explored in
future work.
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Fig. 2. Placement of the users (16 users scenario) and stations/servers on the
map, we considered co-located stations and nodes (servers).

Fig. 3. Comparison of scales of the two different rewards.

test results in Figures 7, 8, 9 and 10 are generated using the

real world cabspotting dataset with 3453 timesteps.

The scaling of the training rewards between the two objec-

tives is a challenging task as the two objectives need to be

scaled so that the total values of the rewards in an episode are

roughly the same scale. We were able to achieve this using

experimental evaluation of different scaling methods. In Figure

3 you can see that scale of the rewards within a random 100

timestep episode is almost within the same range.

RL algorithms are very sensitive to variation of hyperparam-

eters [32], therefore using them for new problems requires lots

of hyperparameter tuning. By extensive simulation, we found

the following values as the optimal hyperparameters values for

each of the RL algorithms. The values are presented in Table

II.

In the testing phase, we averaged the results for 20 separate

episodes for each of the experiments.

We compared the results of the learning algorithms with two

greedy schedulers that focus on latency or energy consumption

only. As there is no work with a similar setting to ours we

chose two heuristic algorithms 1. Bestfit algorithm as the

ground truth value for energy consumption [18] and 2. A

latency greedy algorithm that moves the services to the closest

Neural Network
# Layers Layers size Activation function

2 64 Linear
PG

Train batch size Gamma Learning rate
1000 0.99 0.0003

PPO
SGD minibatch size train batch size learning rate

128 1000 0.0003
IMPALA

Train batch size Gamma Learning rate
1000 0.99 0.0003

TABLE II
HYPERPARAMETERS OF THE RL ALGORITHMS

Fig. 4. Average number of empty servers during the RL algorithms training

vicinity of the users as the ground truth value for latency [6].

We compared IMPALA with two other RL algorithms that

have been widely used in previous scheduling works, Vanilla

Policy Gradient used in a paper with an approximately similar

setting [41] and PPO which is one of the state of the art

algorithms previously used in systems research and Kubernetes

scheduling [42].

VIII. RESULTS

We evaluated the result in terms of the joint energy saving

and latency objectives. During the training phase of the algo-

rithm, we observed that among the three tested RL algorithms

IMPALA showed the most stable convergence. As you can see

in Figure 5 and Figure 6 the green line for IMPALA has fewer

variations during the training. This variation is not evident

in Figure 4 as all the algorithms converge to some optimal

value very quickly. IMPALA also shows a better convergence

in all scenarios to the optimal energy saving objective which

is 6 empty servers. There was not a consistent performance

difference between the Policy gradient and PPO during the

training.

For the test results, we also compared the results with the

latency and energy saving heuristic algorithms. From Figure

7 we can see that the PG and IMPALA can achieve the

best average latency in the network among the three tested

RL algorithms. However, the difference between the achieved

results in both IMPALA and PG cases is very close.

In the case of the energy saving objective, the IMPALA was

able to converge to the optimal result in all network sizes. This

is illustrated in Figure 8. This was not the case for the other

two RL algorithms.

Analysis of the timesteps (instead of the average of the

servers) of a test episode can also confirm similar results
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Fig. 5. Average network latency during the RL algorithms training

Fig. 6. Average episode rewards for different RL algorithms during the
training

Fig. 7. Average latency of different number of users sizes for different
algorithms

Fig. 8. Average number of empty servers of different number of users sizes
for different algorithms

Fig. 9. Number of empty servers of different algorithms during a sample
episode run

Fig. 10. Average network latency of different algorithms during a sample
episode run

to averaged results of multiple episodes (previously shown

test results). In Figures 9 and 10 we observe that during a

sample 200 timestamp episode the ordering is the same as

the averaged results. We can also see that IMPALA is able

to achieve similar performance with the heuristic method that

focuses on the energy saving objective only. It can achieve this

result while reducing the average latency of users by 43%.

This demonstrates the efficacy of the Mobile-Kube system

in providing MEC services in a sustainable fashion. From

these results, we observed that IMPALA is able to achieve

the best result in terms of achieving a trade off between the

two aforementioned objectives.

IX. CONCLUSIONS AND FUTURE WORK

In this paper, we presented a deep reinforcement learning

solution for reducing energy consumption in containerised

clusters. Our results suggest that commonly used heuristic

algorithms like bin-packing can be replaced with learning-

based methods to achieve similar performance for the targeted

object while also improving performance in other areas. Some

directions for future works are:

Checkpointing of stateful services In this work we only

considered the case the case of stateless services that could

be turned on and off anytime without the need of preserving

their current state. However, this is not the case for many

real-world use cases. To this end, a checkpointing mechanism

that could preserve the current state of the service until it is

restarted can be implemented in future works.

Kubernetes full implementation Currently we have our

scheduling control loop completely out of the Kubernetes

cluster. Although Mobile-Kube can be deployed in a cloud

environment best practice would be to place the control loop

inside the Kubernetes cluster. Kubernetes custom resource and

operators can be used in future works to achieve this goal.
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