
TESCO: Multiple Simulations based AI-augmented
Fog computing for QoS Optimization

Sundas Iftikhar
School of Electronic Engineering and Computer Science

Queen Mary University of London
London, United Kingdom

s.iftikhar@qmul.ac.uk

Uttkarsh Raj
School of Electronic Engineering and Computer Science

Queen Mary University of London
London, United Kingdom

u.raj@qmul.ac.uk

Shreshth Tuli
Department of Computing
Imperial College London

London, United Kingdom

s.tuli20@imperial.ac.uk

Muhammed Golec
School of Electronic Engineering and Computer Science

Queen Mary University of London
London, United Kingdom

m.golec@qmul.ac.uk

Deepraj Chowdhury
Department of Electronics and communication engineering

International Institute of Information Technology
Naya Raipur, India

-deepraj19101@iiitnr.edu.in

Sukhpal Singh Gill
School of Electronic Engineering and Computer Science

Queen Mary University of London
London, United Kingdom

s.s.gill@qmul.ac.uk

Steve Uhlig
School of Electronic Engineering and Computer Science

Queen Mary University of London
London, United Kingdom

steve.uhlig@qmul.ac.uk

Abstract—Fog computing is one of the most widely used
paradigms for analyzing and computing the data locally, instead
of sending data to remote cloud servers. The main objective
of fog computing is to lower the latency of services compared
to cloud systems while also reducing the requirement of net-
work bandwidth across computing devices. But as in a fog
environment, more data is processed locally, fog nodes usually
receive more requests daily, leading to system contention and
processing overload. To tackle this, the state-of-the-art relies on
machine learning coupled with simulations to forecast processing
loads and limit the chances of node contention. However, prior
work performs a single simulation to test whether a resource
management decision, such as task placement, is optimal or not.
This usually ignores the stochastic aspects in the environment
or the noise in simulations. To resolve this, we proposed a novel
approach called TESCO to perform simulations to test multiple
candidate scheduling decisions and decide the optimal one. We
demonstrate that TESCO outperforms state-of-the-art scheduler
(COSCO) that uses single simulations with low overheads.

Index Terms—AI-augmented fog computing, QoS optimization,
Task scheduling

I. INTRODUCTION

Fog computing is a recent trend in the area of distributed

systems. The literature has reported that data processing has

moved away from cloud computing towards more local pro-

cessing environments, also referred to as fog computing [1][2].

To reduce the latency of the system, cloud computing has been

extended closer to the “edge” of the network following the

data gravity principle. Herein, the data processing occurs in

the local devices near to the edge device rather than in the

cloud [3]. Figure. 1 shows layers in the architecture of fog

computing. Fog computing can reduce latency of network and

storage requirement of a system, by bringing them closer to

end users, which results in faster response to the users [4].

The main reason behind utilizing fog computing presently is

to give better Quality of Service (QoS) for latency-sensitive

IoT applications. It also calls for effectively assessment and

monitoring the offered services. In fog computing, resources

can be hosted at terminals, such as Wi-Fi access points or

set-top boxes. It runs close to the ground, generates automatic

reactions that provide value [5]. Adopting fog with cloud is

distinguished due to its closeness to end users, ability to enable

mobility, and dense geographical dispersion. However, the

fundamental differentiating factor for fog architectures is that

the nodes are resource constrained and prone to contention.

With all the benefits of fog computing, inherent issues with fog

architecture make implementing latency-sensitive applications

in fog architecture challenging [6]. As in fog environments

more data is processed locally, fog devices get more service

request daily, leading to system contention and processing

2092

2022 IEEE Smartworld, Ubiquitous Intelligence & Computing, Scalable Computing & Communications, Digital Twin, Privacy
Computing, Metaverse, Autonomous & Trusted Vehicles (SmartWorld/UIC/ScalCom/DigitalTwin/PriComp/Metaverse)

979-8-3503-4655-8/22/$31.00 ©2022 IEEE
DOI 10.1109/SmartWorld-UIC-ATC-ScalCom-DigitalTwin-PriComp-Metaverse56740.2022.00302

20
22

 IE
EE

 S
m

ar
tw

or
ld

, U
bi

qu
ito

us
 In

te
lli

ge
nc

e
&

 C
om

pu
tin

g,
 S

ca
la

bl
e

C
om

pu
tin

g
&

 C
om

m
un

ic
at

io
ns

, D
ig

ita
l T

w
in

, P
riv

ac
y

C
om

pu
tin

g,
 M

et
av

er
se

, A
ut

on
om

ou
s &

 T
ru

st
ed

 V
eh

ic
le

s (
Sm

ar
tW

or
ld

/U
IC

/S
ca

lC
om

/D
ig

ita
lT

w
in

/P
riC

om
p/

M
et

a)
 |

97
9-

8-
35

03
-4

65
5-

8/
22

/$
31

.0
0

©
20

22
 IE

EE
 |

D
O

I:
10

.1
10

9/
Sm

ar
tW

or
ld

-U
IC

-A
TC

-S
ca

lC
om

-D
ig

ita
lT

w
in

-P
riC

om
p-

M
et

av
er

se
56

74
0.

20
22

.0
03

02

Authorized licensed use limited to: Queen Mary University of London. Downloaded on July 29,2023 at 19:54:12 UTC from IEEE Xplore. Restrictions apply.

Cloud Server

Node/server Node/server Node/server

DeviceDevice Device Device DeviceDeviceDevice

Cloud Layer
Data processing

Data warehousing

Device Layer
Sensor

Controllers

Fog Layer
Data processing
Control response

Fig. 1. Fog Architecture

overload. Efficient management of system resources in fog

layer is very important to avoid system contention and pro-

cessing overload. According to the prior work [7], a set of the

resource management methods employed in cloud computing

are irrelevant in fog computing because of the latter’s unique

characteristics, such as its reliance on a wide range of devices,

geographical dispersion, and mobility.

New studies [8][9] confirm the importance of optimising

aspects such as execution time, response time, dependability,

energy usage, and waiting time for contemporary applications

and load balancing and system contention avoidance in fog

environment [10]. Latest advancement in Artificial Intelligence

(AI) has attained the attention of researcher for resource man-

agement issues. Different resource management techniques

based on AI solutions and non AI solutions are presented

to handle resource contention, load balancing, latency, energy

use, resource utilisation, and associated costs challenges in

literature [5][6]. AI based techniques are emerging as promis-

ing techniques to handle these issues and optimize above

mentioned aspects. In addition, we can use AI techniques

such as Machine learning (ML) on millions of terabytes

of gathered data to analyse fog system operations; this is

why fog computing is expected to eventually overtake cloud

computing as the industry standard, bringing together Internet

of Things (IoT), distributed intelligence, and Big Data [11].

In prior works, ML methods are used for workload predic-

tions, resource consumption prediction, anomaly prediction,

decision making (Reinforcement learning). Some state-of-

the-art solutions typically use a combination of data-driven

ML methods with simulated runs on a cyber-physical digital

twin of the computational infrastructure. This enables such

methods to look-ahead into the resource consumption and

load requirements for a future time step. Such predictions

facilitate in making a more informed decisions. However,

prior work tends to use ML methods with simulation for

single decision to generate feedback signals and informed

resource management solutions. In this work, we conjecture

that simulations are more powerful in compared to the way

they are used in prior work. We leverage simulations to not

only generate feedback signals for single scheduling decision,

but generate feedback signals for multiple scheduling decisions

and compare across decisions and execute optimal placement.

We do this by proposing a novel approach, which we refer

to as mulTiplE Simulations based sCheduler to offer AI-

augmented fog computing framework called TESCO. The

main contributions of this work are:

• Proposing a co-simulation based AI technique TESCO

for QoS Optimization in fog environment.

• Comparing variations of TESCO against state-of-the-art

methods that leverage single-step simulations.

• Sensitivity analysis of the hyperparameters in TESCO to

present and leverage performance and compute overhead

tradeoffs.

• Evaluations that demonstrate that TESCO outperforms

state of the art approaches by improving execution times,

wait time, response times, Service Level Agreement (or

SLA) violation and energy consumption by up to 3.15%,

13.64%, 3.16%, 34% and 11%, respectively.

II. RELATED WORK

In this section, we discuss and present the literature. With

the rapid development of AI and chip technologies, the di-

versity of IoT has also increased. We can now see these IoT

devices in fields as diverse as e-health, military applications,

and education [5]. The variety and number of devices with dif-

ferent energy consumption and processing power connected to

the edge have increased with the number of IoT devices. This

variety creates undesirable fluctuations in response time and

energy consumption in edge/fog computing. Therefore, there

is a need for solutions that can handle workload demands with

low latency in an energy-efficient manner. When the literature

is examined, it is seen that there are studies to overcome this

problem with schedule-compute tasks. According to Tuli et al.

[6] optimized the QoS parameters by formulating a Gradient-

based algorithm with the COSCO framework they proposed.

It also provides a simulation environment for edge with this

work and allows container orchestration. They claimed that the

gradient-based back-propagation approach they proposed, per-

forms better than other state-of-the-art scheduler approaches

and reduces system contention. The proposed approach uses a

neural network model (Gradient Based Optimization Strategy)

as a surrogate that predicts QoS parameters of the system for a

future timestep. The surrogate model is trained using simula-

tion based feedback generated by forecasting the resource uti-

lization characteristics of the running workloads. This enables

training of data-driven models such as those that are based on

deep neural networks using simulation based feedback signals

as supervision labels. In another study, the authors proposed a

new task scheduling framework called HUNTER to optimize

energy efficiency in rapidly growing Cloud Data Centres

(CDC) [12]. The amount of energy consumed for cooling

infrastructure in data centers can be as large as the amount of

energy spent for computing [13]. This results in an increase in

energy consumption and thus carbon footprint in CDC. Using

Gated Graph Convolution Network (GGCN) model, energy,

thermal and cooling factors are modelled. Thus, it is aimed to

optimize energy efficiency in CDCs. The authors evaluated

2093

Authorized licensed use limited to: Queen Mary University of London. Downloaded on July 29,2023 at 19:54:12 UTC from IEEE Xplore. Restrictions apply.

TABLE I
COMPARISON OF TESCO WITH EXISTING WORKS.

Study Task Scheduling Simulation Mode
COSCO [6] Fog/Edge Single Simulation

HUNTER [12] Cloud Single Simulation
Ifogsim [18] Fog/Edge Single Simulation
CloudSim [9] Cloud Single Simulation

TESCO Fog/Edge Multiple Simulation

the performance of HUNTER in a simulated environment

using the CloudSim and COSCO frameworks. In Calheiros

et al. study [9], Cloudsim, a comprehensive simulation for

simulating and modelling cloud computing environments, is

proposed. In addition, CloudSim provides migration flexibility

for space and time-based shares for virtualized services. Thus,

with CloudSim, the authors aim to design new application

provisioning algorithms for cloud computing. A drawback of

such approaches is the requirement of large amounts of data to

train deep neural networks as surrogate models [14, 15]. This

may not be feasible in many settings as generating data has

significant time and cost overheads [16]. Another challenge

with such approaches is that they are trained for specific

system configurations while generating data at training time.

If this is not the case in at test time or there is concept

drifts within the distributions of the resource requirements of

the running workloads, then these approaches need to be re-

trained. This imposes further overheads for fine-tuning neural

models [17]. Thus, it is crucial to have approaches that are data

agnostic and use the power of simulations to take decisions.

This work takes a step in the direction in making resource

management agnostic to pre-collected data. We do this using

an approach that is purely based on heuristics and simulations.

We use a convex combination of response time and energy

consumption to choose across multiple candidate solutions

(more details given in Section IV). Table I summarizes the

similarities and differences among TESCO and the related

methods.

III. METHODOLOGY

A. Analysis

Realizing the claimed influence and benefits of fog com-

puting on people’s lives, we analyze the existing literature on

fog computing, discussed in section II, and found that it is

an emerging paradigm of distributed systems that includes

all intermediate devices between cloud and IoT layer. The

execution, storage, and network latency can be significantly

reduced by pulling the execution and storage devices in

proximity to the user in form of fog computing. It results in

several benefits in form of reduced cost, and latency, improved

reliability, increased stability, and lower network load. As a

case study of fog computing, we can consider example of

Netflix. Netflix caches and processes popular videos locally

using fog computing and give a better viewing experience.

While unpopular videos are stored and processed in the cloud

layer which results in higher latency and also in some cases

lower video quality. But the question is can we cache and

process all the videos on edge? Assuming that there may be

billions of edge nodes near the users and limited Cloud nodes

reachable to all which results in running everything at the edge

is pretty expensive. To make the deployments workable, edge

devices are commonly close to the users and have a limited

capacity for processing, whereas Cloud devices on other hand

are far but can handle large amounts of workload. Therefore,

there is a need to balance task placement to meet the user

latency demands which also minimizes deployment and the

execution costs [6].

B. Challenges and Motivation

During the literature review, major challenges we found

are: delivering low latency for time critical applications and

reduce energy consumption. Many industries such as health-

care, robotics, smart vehicles, smart cities require low response

time for tasks that are sensitive to service level agreements.

The major challenge for achieving low response-time and

energy consumption is provoked by the modern applications

with high dynamic workloads and the host machines with

non-stationary resource capacities. A few applications like

Scavenging method and renewable resources can help drive

the transition to more sustainable model also some works

used reinforcement learning and other AI methods to solve

these problems to some extent but some times not being ample

to adapt to the volatile settings or simply being not capable

of keeping with the extreme user demands [6]. This work

focuses to solve existing problems to provide better QoS in

fog environments.

C. Design and Implementation

For optimization of the QoS parameters, we considered the

convex matrix of Response time and Energy consumption.

Equal weights are given to both parameters. The objective

function for an interval can be calculated using equation 1:

Θ(Pt) = α.AECt + β.ARTt. (1)

where as Average energy consumption and average response

time is calculated using equation 2, 3 taken from work [6].

In the equation, Average Energy Consumption is represented

by AEC, ART represents Average Response Time, host is

represented by h, Power function of host with Powerhi,
specific instant t, and Leaving tasks by L t.

AECt =

∑
hiεH

∫ s(It+1)

t=s(It)
Powerhi(t)dt

|At|
∑

hiεH
Powermax

hi
× (ti+1 − ti) (2)

ARTt =

∑
ltjεLt

ResponseT ime(ltj)

|Lt|maxs≤tmaxlsjεLs
ResponseT ime(lsj)

(3)

We choose a simulation-based approach to implement our

technique. After careful analysis of available simulators, an

event-based simulator named COSCO is selected for imple-

mentation. Bitbrain workload traces [19] are used to test the

performance of the proposed approach. For the design and

implementation of work, it is assumed that Instructions per

2094

Authorized licensed use limited to: Queen Mary University of London. Downloaded on July 29,2023 at 19:54:12 UTC from IEEE Xplore. Restrictions apply.

second, disk capacity, and network bandwidth of each host

are known ahead of time. Resource consumption for a task

can be calculated in the environment in a given time.

D. Evaluation

The proposed technique is evaluated by comparing its re-

sults with the single simulation technique. Single Simulation is

executed with different variations of parameters, e.g., changing

number of hosts in the environment and interval time. By

doing this, we observed that single simulation technique only

considered the top heuristic score which does not guarantee the

best score is achieved. This issue is addressed using TESCO

where we have top 10, 20, 30 or 40 implementation decisions.

Evaluation of TESCO showed comparatively better results for

QoS parameters in fog.

IV. TESCO SCHEDULER

A. System Architecture

This section describes the architecture of our system. We

divided our system in three layers: IoT layer, fog management

layer and fog resource layer.

• IoT Layer: This layer consists of two types of devices.

IoT devices and Gateway devices. Tasks are sent to

gateway devices and gateway devices are responsible for

sending tasks to fog management layer.

• Fog Management Layer: Fog management consists of two

components: Scheduler and Resource Monitoring service.

Resource monitoring service is responsible for monitor-

ing upcoming tasks and resources available. When new

tasks arrive it alerts the scheduler. The scheduler performs

its duty in three steps: Host selection, Container selection

for migration, and target host selection.

• Fog Resource Layer: fog resource layer has Edge sub-

layer and Cloud sub-layer where we have processing

and storage resources. Edge devices are close to the

users and have a limited capacity for processing, whereas

Cloud devices on other hand are far but can handle large

amounts of workload.

We partly modified the single simulation-based scheduler

(i.e., Single-Simulation.py) which test whether a resource

management decision, such as task placement, is optimal or

not and extended it to Multiple simulation-based scheduler

(i.e., Multiple-Simulation.py) which tests multiple candidate

solutions to decide the optimal one to help in improving QoS

parameters for fog computing.

B. Proposed Technique

Our proposed technique works in three steps: Host selection,

Container selection and Target host selection. First, it selects

host from available host from which container needs to be

migrated, in second step it selects the the containers which

have high host Instructions per second (IPS) utilization and

thirdly it selects appropriate host on which new container or

migrating container is to be placed.

• Host Selection: For the selection of hosts which need

container migration, a threshold policy has been used.

Fig. 2. System Architecture

The threshold is set to 70 percent. If the utilization of

host CPU is greater than 70, then those hosts are selected.

We adopted this threshold value from work [20].

• Container Selection: From the selected hosts, the con-

tainers which have the highest CPU utilization ratio are

selected for migration.

• Targeted Host Selection: For placement of new containers

and previously selected containers in interval It, gradient

based scheduler gives preferred decisions for placement.

Using Long Short-Term Memory (LSTM), utilization

metrics for next interval are predicted. Now, with pre-

dicted task and host utilization metrics from LSTM

and decision from gradient based scheduler, simulator

predicts QoS at end of interval It. These inputs are feed

to another neural approximator for convex combination

of objective function. Then again using trained model and

scheduler data set is generated to train neural network.

It returns the decisions with hyper- parameters set to

10,20,30,40. At interval It output of previous interval is

2095

Authorized licensed use limited to: Queen Mary University of London. Downloaded on July 29,2023 at 19:54:12 UTC from IEEE Xplore. Restrictions apply.

given to the gradient based scheduler. Hyper-parameters

(decision-variable) are set to 10, 20, 30, and 40 to ob-

serve the performance of model. It uses hyper-parameter

value and utilization metrics to output preferred decision.

Simulator is used to estimate objective function for given

decisions. Detailed description of our simulation is given

below:

• main.py: All the global constants for our simulation

are initialized in main.py. Since we used event based

simulator, we set simulation steps first. The Interval-

time is set to 300 sec (seconds) or 5 minutes and every

scheduling interval will get executed in every 5 minute.

Number of containers are set equal to number of hosts.

Total-power is set to 1000 kilowatts and bandwidth of

router is 10000 megabytes per second.

• stats.py: This component maintains record of workload

characteristics, waiting tasks in queue, and utilization

metrics of tasks and hosts. On completion of each inter-

val, this component calls savestats() function which saves

idle hosts, active hosts, active tasks, waiting tasks and the

workload information.

• scheduler.py: The scheduler component enables the

scheduling of the decisions with help of task selection

and task placement. Task selection() function picks the

container to be migrated to different host based on thresh-

old policy whereas task placement() function returns

the targeted host for every task selected by selection()
function or the new tasks created during that interval.

• Multiple-Simulation.py: In Multiple Simulation, we

execute the multiple Simulation method for top 10, 20,

30 or 40 decisions. It work in three steps: First the

scheduler gives top scheduling decision based on the

hyper-parameter set. Then utilization metric predictor

is used to predict utilization metrics for next interval

and in third step top decisions and utilization metrics

are used and simulation is run to predict QoS parameters.

The pseudo-code of the steps applied for task orchestration

is shown in Algorithm 1. Here T the tasks to be scheduled

on host h. For time interval It if time interval is equal to

zero, task is allocated randomly otherwise, it gets output of

previous interval At − 1. The Utilization metrics Umetric
are feed to trained Long short-term memory (LSTM) model

which gives prediction for utilization metrics of next interval.

Scheduling decision is simulated and objective function O(Pt)
is calculated based on simulation.

V. EXPERIMENTAL RESULTS

This section presents the simulation setup, baseline ap-

proach and comparative results of Multiple Simulation with

Single-Simulation from the paper [6] for a given set of 10

hosts.

A. Simulation setup

To test the efficacy of the proposed approach and com-

pare its results with the baseline approach, we have done

Algorithm 1 TESCO Algorithm

0: Input: Task, Host, LSTMtrainedmodel, O(pt),
function− approximator f
Output: Decision
Begin

For scheduling interval It
if t==0

D ← Drandom

else
Get � (At−1),�(Ht−1)
Umetric(At)← LSTM(Umetric (At′))
set hyper-parameter (decision-variable)

dec = scheduler (It)

U(Hi), AEC,ART ← simulated (Dec (At), U(At))
calculate O (Pt)

D = minimize(D, f,O(Pt),�(At−1),�(Ht−1))
fine− tune f
return D

End =0

experiments in simulated environment. We simulated 10 Azure

fog host machines with six hosts in fog layer and 4 in

the cloud layer. Hosts correspond to simulation with MIPS,

RAM, Bandwidth capacities with power consumption with

CPU utilization. Since in simulation, placement of host on

geographical places is not feasible, we have depicted this

with network and latency attributes of hosts. The detailed

specifications of host machines are given in Table II.

B. Baseline approach

We have evaluated the proposed approach TESCO against

the Single simulation scheduling approach. In the Single

simulation approach, 1) coupled simulations in which the

simulator runs in the background with a scheduling algorithm

and generates more data to facilitate the decision-making of

an AI model and 2) container orchestration are combined to

estimate QoS parameters in the near future. It allows single-

step simulation of container migration decisions.

C. Metrics

For evaluation, we used average energy consumption, av-

erage response time, SLA violation, scheduling time, and

average wait time metrics, and their values are calculated using

equation 2, 3, 4, taken from [6] work. Here Lt, represents

leaving tasks.

SLA =

∑
t

∑
ltjεLt

I(ResponseT ime(ltj) ≤ ψ(ltj)
∑

t |Lt| (4)

Scheduling Time: Average time to reach the scheduling

decision over all intervals in the run.

Average wait time: Average time for a container in the wait

queue before it starts execution.

2096

Authorized licensed use limited to: Queen Mary University of London. Downloaded on July 29,2023 at 19:54:12 UTC from IEEE Xplore. Restrictions apply.

TABLE II
CHARACTERISTICS OF HOST MACHINES IN SIMULATED ENVIRONMENT

Quantity Core MIPS RAM (MB) RAM BW (MB/s) Ping time (ms) Disk BW ((MB/s) Network BW ((MB/s) Layer
4 2 4029 4295 372 3 13.4 1000 Fog
2 4 8102 17180 360 3 10.3 1000 Fog
2 4 8102 17180 360 76 10.3 1000 Cloud
2 2 2000 34360 376 76 11.64 2500 Cloud

Fig. 3. Average Execution Time

Fig. 4. Average Wait Time

D. Results

For comparative analysis of our technique for QoS parame-

ters in fog computing, we run both COSCO (single simulation

scheduler) and TESCO (multiple simulation scheduler with

hyper-parameters (decisions) set equal to 10, 20, 30, and 40

respectively). The comparative results of TESCO with baseline

approach are presented in Table I. We considered average

energy consumption, average execution time, average response

time, average wait time, and SLA violations as comparison

metrics.

• Execution time: We evaluated the performance of TESCO

in terms of execution time and measured its value in

seconds (s). We observed a significant difference in

execution time with TESCO scaling lower execution time

than single simulation. Figure.3 shows execution time

Fig. 5. Average Energy Consumption

Fig. 6. Total Response Time

for single simulation and TESCO with various different

values of hyper-parameters(decisions). It is noted that

TESCO with 10 decisions has shown better results than

all others in terms of execution time. Execution time

for single simulation and TESCO for 10 decisions is

observed to decrease relatively by 3.15% percent which

puts a relatively better impact.

• Average Wait time: It is the average time between the

interval a container is created and the interval its execu-

tion started. Wait time is measured in intervals. Figure.4

shows wait time of TESCO with 10, 20 decisions is

comparatively lower than single-simulation. It is also

noted that a decrease in wait time also decreased response

time accordingly. It is also observed that the decrease in

wait time is 13.64% with 10 decisions and 17.46% with

2097

Authorized licensed use limited to: Queen Mary University of London. Downloaded on July 29,2023 at 19:54:12 UTC from IEEE Xplore. Restrictions apply.

Fig. 7. Average Scheduling Time

Fig. 8. Fraction of SLO Violation

20 decisions when compared with Single- Simulation.

• Average Energy Consumption: Average Energy plays a

vital role when it comes to fog computing. Though

energy-efficient equipment is used and there are fewer

carbon emissions, the cloud infrastructure reduces energy

waste. After our experiment is performed, it can be

TABLE III
COMPARISON OF TESCO AND BASELINE APPROACH USING 10 HOSTS

Metrics COSCO
TESCO

10
TESCO

20
TESCO

30
TESCO

40
AEC

(kW.h)
531.87 605.06 520.80 575.42 400.06

AET
(sec)

3521.29 3206.79 3532.36 3658.26 3468.17

ART
(sec)

3521.93 3205.91 3531.98 3648.63 3461.29

AWT
(interval)

40315.55 26667.11 22847.08 45193.27 36524.15

F
(index)

0.00165 0.0018 0.00182 0.00188 0.00173

SV 0.043 0.116 0.097 0.009 0.009
AST
(sec)

4.19 4.71 5.34 5.09 5.23

*Abbreviations used in Table III are - AEC: Average Energy, AET: Average
Execution Time, ART: Average Response Time, AWT: Average Wait Time,
SV: SLA Violations, AST: Average Scheduling Time.

depicted from figure.5 that energy consumption for deci-

sions 20 and 40 showed better result when compared with

single-simulation. Multiple simulation, when compared

with Single simulation show 11% improvement in energy

consumption.

• Total Response time: It is defined as sum of time taken

to schedule and execute received tasks. Response time

shown in fig 6 is measured in seconds. With the com-

parison of Single-simulation with TESCO with varying

number of candidate decisions (i.e., 10,20,30 and 40), it is

observed that response time of TESCO scales lower than

Single Simulation with decision value 10. With difference

in the values when compared with Single Simulation it

has been noted that Response time decreased by 3.16%.

• Average Scheduling time: Scheduling time is average time

to reach the scheduling decision over all intervals and

is measured in seconds (s). Figure. 7 shows comparison

of scheduling time for TESCO and single-simulation

method. The scheduling time for Single Simulation is

4.19 seconds and for the rest of Multiple Simulation it

is 4.71, 5.34, 5.09, 5.23 seconds respectively. Due to the

reason of using multiple simulation it was expected for

the scheduling time to go higher as compared to Single-

simulation.

• SLA Violation: SLA is an agreement that the client and

the cloud service provider sign to guarantee a higher

level of service. Because of rising user needs, cloud

service providers are presently unable to guarantee QoS,

that results in SLA violations. From figure.8, it can be

noted that SLA violation rate has drastically decreased

for decisions 30 and 40 and which puts a better impact

overall. After comparing it with single simulation it is

calculated that the SLA violation has raised down to 34%.

Finally with experimenting TESCO and executing simu-

lation with different number of hosts, simulation-steps and

interval-time, we observed that the TESCO with 20 decisions

is performing better than other simulation techniques. Thus

the optimal approach for our current model is TESCO with

20 hyper-parameters with lower scheduling time.

VI. CONCLUSIONS AND FUTURE WORK

In this work, we proposed a multiple simulation-based

scheduling technique (TESCO) for fog systems where we use

AI coupled with simulations to forecast processing loads and

limit the chances of node contention. Contrary to other state-

of-art-works, where single simulation is used to test whether

a decision is optimal or not, we propose TESCO where

simulations are performed to test multiple candidate schedul-

ing decisions and decide the optimal one. In this way, this

work also addresses stochastic aspects in the fog computing

environment and the noise in simulations. We have compared

the performance of TESCO with COSCO baseline, which is

a single simulation based technique. Experimental results has

shown TESCO outperforms state-of-the-art scheduler that uses

single simulations with low overheads.

2098

Authorized licensed use limited to: Queen Mary University of London. Downloaded on July 29,2023 at 19:54:12 UTC from IEEE Xplore. Restrictions apply.

A. Future Work

TESCO demonstrates better performance in scheduling

tasks to hosts in fog but still there ways to improve its

performance in the future. This work can be extended to work

on the optimization of other QoS parameters such as energy

consumption, reliability and availability [5]. TESCO scheduler

is currently making decisions on the basis of the container’s

existing Instructions per second. We can also use other ML

models to predict instructions per second for future intervals.

SOFTWARE AVAILABILITY

All code, datasets and results are publicly available as part

of a GitHub repository under CC-BY License. The repository

can be accessed using the URL: https://github.com/sunndas/

TESCO

REFERENCES

[1] S. Yi, C. Li, and Q. Li, “A survey of fog computing:

concepts, applications and issues,” in Proceedings of the
2015 workshop on mobile big data, 2015, pp. 37–42.

[2] S. Iftikhar, M. Golec, D. Chowdhury, S. S. Gill, and

S. Uhlig, “Fogdlearner: A deep learning-based cardiac

health diagnosis framework using fog computing,” in

Australasian Computer Science Week 2022, 2022, pp.

136–144.

[3] M. Iorga, L. Feldman, R. Barton, M. J. Martin, N. S.

Goren, C. Mahmoudi et al., “Fog computing conceptual

model,” 2018.

[4] S. Iftikhar, M. Golec, D. Chowdhury, S. S. Gill,

and S. Uhlig, “Fog computing based router-distributor

application for sustainable smart home,” in 2022
IEEE 95th Vehicular Technology Conference:(VTC2022-
Spring). IEEE, 2022, pp. 1–5.

[5] S. S. Gill, M. Xu, C. Ottaviani, P. Patros, R. Bahsoon,

A. Shaghaghi, M. Golec, V. Stankovski, H. Wu, A. Abra-

ham et al., “Ai for next generation computing: Emerging

trends and future directions,” Internet of Things, vol. 19,

p. 100514, 2022.

[6] S. Tuli, S. R. Poojara, S. N. Srirama, G. Casale, and

N. R. Jennings, “Cosco: Container orchestration using

co-simulation and gradient based optimization for fog

computing environments,” IEEE Transactions on Parallel
and Distributed Systems, vol. 33, no. 1, pp. 101–116,

2021.

[7] B. G. Batista, C. H. G. Ferreira, D. C. M. Segura,

D. M. Leite Filho, and M. L. M. Peixoto, “A qos-driven

approach for cloud computing addressing attributes of

performance and security,” Future Generation Computer
Systems, vol. 68, pp. 260–274, 2017.

[8] Z. M. Nayeri, T. Ghafarian, and B. Javadi, “Application

placement in fog computing with ai approach: Taxonomy

and a state of the art survey,” Journal of Network and
Computer Applications, vol. 185, p. 103078, 2021.

[9] R. N. Calheiros, R. Ranjan, A. Beloglazov, C. A.

De Rose, and R. Buyya, “Cloudsim: a toolkit for mod-

eling and simulation of cloud computing environments

and evaluation of resource provisioning algorithms,” Soft-
ware: Practice and experience, vol. 41, no. 1, pp. 23–50,

2011.

[10] S. Iftikhar, A. Tariq, and S. A. Khan, “Optimal task

allocation algorithm for cost minimization and load

balancing of gsd teams,” Lecture Notes on Software
Engineering, vol. 4, no. 1, pp. 16–19, 2016.

[11] Q. D. La, M. V. Ngo, T. Q. Dinh, T. Q. Quek, and

H. Shin, “Enabling intelligence in fog computing to

achieve energy and latency reduction,” Digital Commu-
nications and Networks, vol. 5, no. 1, pp. 3–9, 2019.

[12] S. Tuli, S. S. Gill, M. Xu, P. Garraghan, R. Bahsoon,

S. Dustdar, R. Sakellariou, O. Rana, R. Buyya, G. Casale

et al., “Hunter: Ai based holistic resource management

for sustainable cloud computing,” Journal of Systems and
Software, vol. 184, p. 111124, 2022.

[13] E. Pakbaznia and M. Pedram, “Minimizing data center

cooling and server power costs,” in Proceedings of the
2009 ACM/IEEE international symposium on Low power
electronics and design, 2009, pp. 145–150.

[14] A. Lakhan, Q.-U.-A. Mastoi, M. Elhoseny, M. S. Memon,

and M. A. Mohammed, “Deep neural network-based

application partitioning and scheduling for hospitals

and medical enterprises using iot assisted mobile fog

cloud,” Enterprise Information Systems, vol. 16, no. 7,

p. 1883122, 2022.

[15] T. Goethals, F. De Turck, and B. Volckaert, “Self-

organizing fog support services for responsive edge com-

puting,” Journal of Network and Systems Management,
vol. 29, no. 2, pp. 1–33, 2021.

[16] P. Kang and P. Lama, “Robust resource scaling of

containerized microservices with probabilistic machine

learning,” in 2020 IEEE/ACM 13th International Con-
ference on Utility and Cloud Computing (UCC). IEEE,

2020, pp. 122–131.

[17] B. Gu, J. Kong, A. Munir, and Y. G. Kim, “A frame-

work for distributed deep neural network training with

heterogeneous computing platforms,” in 2019 IEEE 25th
International Conference on Parallel and Distributed
Systems (ICPADS). IEEE, 2019, pp. 430–437.

[18] H. Gupta, A. Vahid Dastjerdi, S. K. Ghosh, and

R. Buyya, “ifogsim: A toolkit for modeling and simula-

tion of resource management techniques in the internet of

things, edge and fog computing environments,” Software:
Practice and Experience, vol. 47, no. 9, pp. 1275–1296,

2017.

[19] S. Shen, V. Van Beek, and A. Iosup, “Statistical charac-

terization of business-critical workloads hosted in cloud

datacenters,” in 2015 15th IEEE/ACM International Sym-
posium on Cluster, Cloud and Grid Computing. IEEE,

2015, pp. 465–474.

[20] R. Ranjan, R. Buyya, and M. Parashar, “Special section

on autonomic cloud computing: technologies, services,

and applications,” 2011.

2099

Authorized licensed use limited to: Queen Mary University of London. Downloaded on July 29,2023 at 19:54:12 UTC from IEEE Xplore. Restrictions apply.

